爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Open3d Point cloud outlier removal 点云异常值移除

      首页 知识中心 云计算 文章详情页

      Open3d Point cloud outlier removal 点云异常值移除

      2023-02-27 09:14:47 阅读次数:183

      数据,python

      Point cloud outlier removal 点云异常值移除

      从扫描设备收集数据时,生成的点云往往包含想要删除的噪声和伪影(artifacts)。本教程介绍了 Open3D 的异常值删除功能。

      Prepare input data 准备输入数据

      加载点云,使用 voxel_downsample下采样。

      print("Load a ply point cloud, print it, and render it")
      sample_pcd_data = o3d.data.PCDPointCloud()
      pcd = o3d.io.read_point_cloud(sample_pcd_data.path)
      o3d.visualization.draw_geometries([pcd],
                                        zoom=0.3412,
                                        front=[0.4257, -0.2125, -0.8795],
                                        lookat=[2.6172, 2.0475, 1.532],
                                        up=[-0.0694, -0.9768, 0.2024])
      
      print("Downsample the point cloud with a voxel of 0.02")
      voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.02)
      o3d.visualization.draw_geometries([voxel_down_pcd],
                                        zoom=0.3412,
                                        front=[0.4257, -0.2125, -0.8795],
                                        lookat=[2.6172, 2.0475, 1.532],
                                        up=[-0.0694, -0.9768, 0.2024])
      

      或者使用 uniform_down_sample 点云下采样,通过收集每n个点。

      print("Every 5th points are selected")
      uni_down_pcd = pcd.uniform_down_sample(every_k_points=5)
      o3d.visualization.draw_geometries([uni_down_pcd],
                                        zoom=0.3412,
                                        front=[0.4257, -0.2125, -0.8795],
                                        lookat=[2.6172, 2.0475, 1.532],
                                        up=[-0.0694, -0.9768, 0.2024])
      

      Select down sample 选择下采样

      下面函数使用 select_by_index ,它采用二进制掩码(binary mash)来仅输出选定的点。所选点和未所选点将可视化。

      def display_inlier_outlier(cloud, ind):
          inlier_cloud = cloud.select_by_index(ind)
          outlier_cloud = cloud.select_by_index(ind, invert=True)
      
          print("Showing outliers (red) and inliers (gray): ")
          outlier_cloud.paint_uniform_color([1, 0, 0])
          inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
          o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
                                            zoom=0.3412,
                                            front=[0.4257, -0.2125, -0.8795],
                                            lookat=[2.6172, 2.0475, 1.532],
                                            up=[-0.0694, -0.9768, 0.2024])
      

      Statistical outlier removal 统计异常值删除

      statistical_outlier_removal删除与平均值相比,与其相邻点距离过大的点。它需要两个输入参数:

      nb_neighbors,它指定在计算给定点的平均距离时要考虑的相邻要素数。

      std_ratio,允许根据点云中平均距离的标准偏差设置阈值水平。此数字越低,过滤器的激进程度就越高,删除的越多。

      print("Statistical oulier removal")
      cl, ind = voxel_down_pcd.remove_statistical_outlier(nb_neighbors=20,
                                                          std_ratio=2.0)
      display_inlier_outlier(voxel_down_pcd, ind)
      

      Radius outlier removal 半径异常值删除

      radius_outlier_removal移除在给定球体周围具有较少邻居的点。可以使用两个参数来调整筛选器以显示您的数据:

      nb_points,允许您选取球体应包含的最小点数。

      radius,它定义将用于计算相邻要素的球体的半径。

      print("Radius oulier removal")
      cl, ind = voxel_down_pcd.remove_radius_outlier(nb_points=16, radius=0.05)
      display_inlier_outlier(voxel_down_pcd, ind)
      
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/pigeon/5452254,作者:一只大鸽子,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像

      下一篇:Python|利用动态规划解决路径数目问题

      相关文章

      2025-05-19 09:04:53

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      2025-05-19 09:04:53
      存储 , 数据 , 数据恢复 , 解压
      2025-05-16 09:15:10

      画图时使用的函数和一些错误处理

      画图时使用的函数和一些错误处理

      2025-05-16 09:15:10
      数据
      2025-05-14 10:33:25

      超级好用的C++实用库之国密sm4算法

      国密SM4算法,全称为国家密码管理局制定的SM4分组密码算法,是中国自主设计的商用密码算法标准之一,用于数据的对称加密。

      2025-05-14 10:33:25
      加密 , 参数 , 数据 , 模式 , 解密
      2025-05-14 10:07:38

      30天拿下Rust之引用

      在Rust语言中,引用机制是其所有权系统的重要组成部分,它为开发者提供了一种既高效又安全的方式来访问和共享数据。引用可以被视为一个指向内存地址的指针,它允许我们间接地访问和操作存储在内存中的数据。

      2025-05-14 10:07:38
      Rust , text , 可变 , 引用 , 数据
      2025-05-14 10:07:38

      30天拿下Rust之所有权

      在编程语言的世界中,Rust凭借其独特的所有权机制脱颖而出,为开发者提供了一种新颖而强大的工具来防止内存错误。这一特性不仅确保了代码的安全性,还极大地提升了程序的性能。

      2025-05-14 10:07:38
      data , Rust , 内存 , 函数 , 变量 , 数据
      2025-05-14 10:03:13

      超级好用的C++实用库之Base64编解码

      Base64是一种编码方式,用于将二进制数据转换为可打印的ASCII字符。这种编码方式常用于在HTTP协议等应用中传输二进制数据,比如:图片、音频、视频等。

      2025-05-14 10:03:13
      Base64 , 字符串 , 数据 , 编码 , 长度
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:58

      java项目多端数据同步解决方案

      多端数据同步是指在多个设备(例如桌面应用、移动应用、Web应用)之间保持数据的一致性。

      2025-05-14 10:02:58
      java , Spring , WebSocket , 同步 , 数据 , 版本号
      2025-05-14 10:02:58

      超级好用的C++实用库之字节流解析器

      字节流解析器是一种软件组件,它负责将接收到的原始二进制数据(字节流)转换为有意义的信息结构或格式。在计算机网络、文件处理和数据通信中,字节流是最基本的数据传输形式,但这些原始字节对于应用程序通常是没有直接意义的,需要通过特定的解析规则来解读。

      2025-05-14 10:02:58
      true , 参数 , 字节 , 数据 , 获取 , 解析器 , 返回值
      2025-05-13 09:49:27

      变量基础_变量场景

      变量基础_变量场景

      2025-05-13 09:49:27
      变量 , 场景 , 存储 , 学习 , 数据 , 编程语言
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5224820

      查看更多

      最新文章

      【边缘计算与IoT】边缘计算的概念和在IoT中的应用

      2025-05-08 09:03:07

      【计算机网络】第三章·数据链路层与局域网/广域网

      2025-05-07 09:09:52

      javascript 西瓜一期 05-08 计算机的基本组成

      2025-04-09 09:14:24

      机器学习项目的流程:从数据到部署

      2025-04-09 09:13:17

      低代码开发重要工具:jvs-logic(逻辑引擎)可视化设计要素

      2025-03-31 08:49:58

      分布式存储技术

      2025-03-28 07:42:50

      查看更多

      热门文章

      Huffman Tree哈夫曼树权值路径长度WPL计算,binarytree ,Python

      2023-04-13 10:16:03

      二叉搜索树BST图节点平衡因子计算,binarytree,Python

      2023-04-13 10:14:56

      python numpy计算任意底数的对数 log

      2023-04-17 10:55:03

      python日期计算:计算相隔任意时间后的准确日期

      2023-04-17 10:55:14

      Python数据分析与展示:科学计算基础库numpy-1

      2023-03-02 06:12:43

      如何用java计算BMI

      2023-02-24 10:11:49

      查看更多

      热门标签

      系统 测试 用户 分布式 Java java 计算机 docker 代码 数据 服务器 数据库 源码 管理 python
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      分布式存储技术

      通过初始时间和流逝的分钟数计算终止时间

      基于SpringBoot+Vue的游戏账号估价交易平台的详细设计和实现(源码+lw+部署文档+讲解等)

      python计算三个点构成的三角形的外切圆圆心坐标及半径

      隐私计算引领数据共享新潮流:开源力量助力数据要素流通

      Java中的分布式文件系统设计与实现

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号