在人工智能落地的实际场景中,模型性能高度依赖标注数据的规模与质量。然而,医疗影像分析、小语种处理、罕见事件检测等领域常面临“数据稀缺”与“域漂移”的双重困境——不仅目标任务仅有少量标注样本(少样本学习,Few-Shot Learning, FSL),且训练数据(源域)与实际应用数据(目标域)可能存在显著分布差异(如不同医院的影像设备参数差异、不同地区的语言使用习惯差异)。这种“跨域少样本学习”(Cross-Domain Few-Shot Learning, CD-FSL)场景,要求模型在数据稀缺与域偏移的双重压力下,仍能快速泛化至新任务。