爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      MySQL 中的 distinct 和 group by 哪个效率更高?

      首页 知识中心 数据库 文章详情页

      MySQL 中的 distinct 和 group by 哪个效率更高?

      2024-04-19 07:39:25 阅读次数:51

      group,索引

      一、结论

      在语义相同,有索引的情况下:group by和distinct都能使用索引,效率相同。
      在语义相同,无索引的情况下:distinct效率高于group by。原因是distinct 和 group by都会进行分组操作,但group by可能会进行排序,触发filesort,导致sql执行效率低下。

      二、distinct用法

      SELECT DISTINCT columns FROM table_name WHERE where_conditions;
      mysql> select distinct age from student;
      +------+
      | age  |
      +------+
      |   10 |
      |   12 |
      |   11 |
      | NULL |
      +------+
      4 rows in set (0.01 sec)

      DISTINCT 关键词用于返回唯一不同的值。放在查询语句中的第一个字段前使用,且作用于主句所有列。

      如果列具有NULL值,并且对该列使用DISTINCT子句,MySQL将保留一个NULL值,并删除其它的NULL值,因为DISTINCT子句将所有NULL值视为相同的值。

      distinct多列去重
      distinct多列的去重,则是根据指定的去重的列信息来进行,即只有所有指定的列信息都相同,才会被认为是重复的信息。

      SELECT DISTINCT column1,column2 FROM table_name WHERE where_conditions;
      mysql> select distinct sex,age from student;
      +--------+------+
      | sex    | age  |
      +--------+------+
      | male   |   10 |
      | female |   12 |
      | male   |   11 |
      | male   | NULL |
      | female |   11 |
      +--------+------+
      5 rows in set (0.02 sec)

      三、group by的使用

      对于基础去重来说,group by的使用和distinct类似:

      单列去重
      语法:

      SELECT columns FROM table_name WHERE where_conditions GROUP BY columns;

      执行

      mysql> select age from student group by age;
      +------+
      | age  |
      +------+
      |   10 |
      |   12 |
      |   11 |
      | NULL |
      +------+
      4 rows in set (0.02 sec)

      四、区别示例

      两者的语法区别在于,group by可以进行单列去重,group by的原理是先对结果进行分组排序,然后返回每组中的第一条数据。且是根据group by的后接字段进行去重的。

      五、distinct和group by原理

      在大多数例子中,DISTINCT可以被看作是特殊的GROUP BY,它们的实现都基于分组操作,且都可以通过松散索引扫描、紧凑索引扫描(关于索引扫描的内容会在其他文章中详细介绍,就不在此细致介绍了)来实现。

      DISTINCT和GROUP BY都是可以使用索引进行扫描搜索的。例如以下两条sql(只单单看表格最后extra的内容),我们对这两条sql进行分析,可以看到,在extra中,这两条sql都使用了紧凑索引扫描Using index for group-by。

      所以,在一般情况下,对于相同语义的DISTINCT和GROUP BY语句,我们可以对其使用相同的索引优化手段来进行优化。

      mysql> explain select int1_index from test_distinct_groupby group by int1_index;
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      | id | select_type | table                 | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra                    |
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      |  1 | SIMPLE      | test_distinct_groupby | NULL       | range | index_1       | index_1 | 5       | NULL |  955 |   100.00 | Using index for group-by |
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      1 row in set (0.05 sec)
      
      mysql> explain select distinct int1_index from test_distinct_groupby;
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      | id | select_type | table                 | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra                    |
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      |  1 | SIMPLE      | test_distinct_groupby | NULL       | range | index_1       | index_1 | 5       | NULL |  955 |   100.00 | Using index for group-by |
      +----+-------------+-----------------------+------------+-------+---------------+---------+---------+------+------+----------+--------------------------+
      1 row in set (0.05 sec)

      六、总结

      在语义相同,有索引的情况下:
      group by和distinct都能使用索引,效率相同。因为group by和distinct近乎等价,distinct可以被看做是特殊的group by。

      在语义相同,无索引的情况下:
      distinct效率高于group by。原因是distinct 和 group by都会进行分组操作,但group by在Mysql8.0之前会进行隐式排序,导致触发filesort,sql执行效率低下。

      但从Mysql8.0开始,Mysql就删除了隐式排序,所以,此时在语义相同,无索引的情况下,group by和distinct的执行效率也是近乎等价的。

      推荐group by的原因
      group by语义更为清晰
      group by可对数据进行更为复杂的一些处理
      相比于distinct来说,group by的语义明确。且由于distinct关键字会对所有字段生效,在进行复合业务处理时,group by的使用灵活性更高,group by能根据分组情况,对数据进行更为复杂的处理,例如通过having对数据进行过滤,或通过聚合函数对数据进行运算。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/mecode/9944845,作者:贺公子之数据科学与艺术,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:BMZCTF:hitcon_2017_ssrfme

      下一篇:java使用redis实现短信验证

      相关文章

      2025-05-14 10:33:16

      30天拿下Rust之切片

      在Rust中,切片是一种非常重要的引用类型。它允许你安全地引用一段连续内存中的数据,而不需要拥有这些数据的所有权。切片不包含分配的内存空间,它仅仅是一个指向数据开始位置和长度的数据结构。

      2025-05-14 10:33:16
      amp , end , 切片 , 字符串 , 引用 , 索引 , 迭代
      2025-05-14 10:33:16

      30天拿下Rust之向量

      在Rust语言中,向量(Vector)是一种动态数组类型,可以存储相同类型的元素,并且可以在运行时改变大小。向量是Rust标准库中的一部分,位于std::vec模块中。

      2025-05-14 10:33:16
      Rust , 使用 , 元素 , 向量 , 方法 , 索引 , 迭代
      2025-05-14 10:03:13

      MySQL 索引优化以及慢查询优化

      MySQL 是一种广泛使用的关系型数据库管理系统,因其性能优异和使用便捷而备受欢迎。然而,随着数据量的增长和查询复杂度的增加,性能瓶颈也变得越来越明显。

      2025-05-14 10:03:13
      MySQL , 优化 , 使用 , 性能 , 数据库 , 查询 , 索引
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      SQL Server 执行计划1--数据查询

      SQL语言(在SQL Server也叫做T-SQL)是一个解释性的语言(declarative language), 主要是描述的是人想要从数据库里获取数据的逻辑。但数据库接收到SQL语句后,会根据相关的统计信息制定自己的取数策略(执行计划)。

      2025-05-14 10:02:48
      Index , 查找 , 索引
      2025-05-14 09:51:15

      mysql 语句如何优化

      MySQL语句的优化是一个复杂但重要的过程,因为它可以显著提高数据库的性能。

      2025-05-14 09:51:15
      JOIN , MySQL , 优化 , 使用 , 排序 , 查询 , 索引
      2025-05-13 09:50:59

      主键失效对该主键对应列上索引的影响

      主键失效对该主键对应列上索引的影响

      2025-05-13 09:50:59
      主键 , 失效 , 对应 , 索引
      2025-05-09 08:20:32

      MySQL——索引(概述和结构介绍)

      索引(index)是帮助 MySQL 高效获取数据的数据结构(是一种有序的数据结构)。

      2025-05-09 08:20:32
      Tree , 存储 , 引擎 , 数据结构 , 查询 , 索引 , 结构
      2025-05-08 09:04:49

      第9关:索引(2024数据库期末综合)

      第9关:索引(2024数据库期末综合)

      2025-05-08 09:04:49
      代码 , 数据表 , 索引
      2025-05-07 09:12:52

      基础—SQL—DQL(数据查询语言)分页查询

      对于分页,不管以后做的是传统的管理系统还是做互联网的项目,基本上都会遇到分页查询的操作。

      2025-05-07 09:12:52
      分页 , 数据 , 查询 , 索引 , 起始
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5232186

      查看更多

      最新文章

      30天拿下Rust之切片

      2025-05-14 10:33:16

      MySQL 索引优化以及慢查询优化

      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      2025-05-14 10:03:13

      mysql 语句如何优化

      2025-05-14 09:51:15

      主键失效对该主键对应列上索引的影响

      2025-05-13 09:50:59

      【MySQL】MySQL索引与事务的透析——(超详解)

      2025-03-10 09:50:17

      查看更多

      热门文章

      正确理解Mysql的列索引和多列索引

      2023-05-12 07:20:42

      MariaDB 数据库之索引详解

      2023-05-19 02:21:24

      【DB笔试面试352】在Oracle数据库中,哪些操作会导致索引失效?

      2023-06-16 06:12:34

      mysql范围查询场景下的自适应跳表索引-第二版-改进点

      2023-06-20 09:19:26

      MySQL 8.0.18 Hash Join不支持left/right join左右连接

      2023-06-20 09:18:44

      【MySQL】—— 数据库索引 (索引是什么?B树,B+树)

      2023-07-05 06:00:58

      查看更多

      热门标签

      数据库 mysql 字符串 数据结构 MySQL 算法 redis oracle java sql python 数据 索引 SQL 查询
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      sql索引详解

      150道MySQL高频面试题,学完吊打面试官--聚簇索引与非聚簇索引

      《MySQL高级篇》六、索引的创建与设计原则

      如何提高mysql delete速度

      面试:“索引背后的数据结构是什么样的?”,五分钟带你了解“B树,B+树”

      mysql explain type 枚举

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号