爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      首页 知识中心 数据库 文章详情页

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      2024-05-22 08:40:01 阅读次数:40

      PostgreSQL

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      Our previous post dived into the details of the storage layer of YugaByte DB called DocDB, a distributed document store inspired by Google Spanner. This post focuses on YugaByte SQL (YSQL), a distributed, highly resilient, PostgreSQL-compatible SQL API layer powered by DocDB. A follow-up post will highlight the challenges faced and lessons learned when engineering such a database.

      YSQL, Distributed PostgreSQL Made Real

      YugaByte SQL (YSQL) is a distributed and highly resilient SQL layer, running across multiple nodes. It is compatible with the SQL dialect and wire protocol of PostgreSQL. This means that developers familiar with PostgreSQL can fully reuse their knowledge (and the standard PostgreSQL client drivers) to build an application powered by YSQL.

      YSQL essentially transforms the monolithic PostgreSQL database into a DocDB-powered distributed database. To accomplish this, it reuses open source PostgreSQL’s query layer (written in C) as much as possible.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      Following were the design goals we set for YSQL early on.

      • Reuse the open source, mature and feature-rich PostgreSQL query layer
      • Preserve existing PostgreSQL functionality and extend as necessary
      • Enable migrations to newer versions of PostgreSQL by implementing features in a modular approach

      Relentless execution towards the above goals has paid rich dividends. YSQL now supports a wider range of existing PostgreSQL functionality than we had originally expected. This is evident from the v1.2 feature matrix, examples being:

      • DDL statements: CREATE, DROP and TRUNCATE tables
      • Data types: All primitive types including numeric types (integers and floats), text data types, byte arrays, date-time types, UUID, SERIAL, as well as JSONB
      • DML statements: Most statements such as INSERT, UPDATE, SELECT and DELETE. Bulk of core SQL functionality now supported includes JOINs, WHERE clauses, GROUP BY, ORDER BY, LIMIT, OFFSETand SEQUENCES
      • Transactions: ABORT, ROLLBACK, BEGIN, END, and COMMIT
      • Expressions: Rich set of PostgreSQL built-in functions and operators
      • Other Features: VIEWs, EXPLAIN, PREPARE-BIND-EXECUTE, and JDBC support

      As for the design goal of migrating to newer versions, YSQL started with the PostgreSQL v10.4 and recently rebased to PostgreSQL v11.2 in a matter of weeks!

      How YSQL Works?

      YSQL internals can be categorized into four distinct areas:

      • System catalog management
      • User table management
      • The read and write IO Path
      • Mapping SQL tables to a document store

      The next sections detail each of the above areas. Before diving into the details, here’s a quick recap of DocDB from the first post of this series.

      • Every table in DocDB has the same schema: one key maps to one document.
      • As a distributed database, it replicates data on each write.
      • Offers single-key linearizability and multi-key snapshot isolation (serializable isolation is in the works).
      • Native support for secondary indexes on any document attribute.
      • Efficient querying and updating a subset of attributes of any document.

      System Catalog Management

      The PostgreSQL documentation on system catalogs says that the system catalogs are regular tables where schema metadata is stored, such as information about tables and columns, and internal bookkeeping information. The initdb code path in PostgreSQL, which is completely different from the code path the deals with user tables, creates and initializes system catalog tables. So, in order to make a distributed SQL database with no single points of failure, it is essential to replicate these system catalogs.

      1. Initialize system catalog through initdb

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      When YSQL starts up for the first time, a modified initdb executes and creates the system catalog a replicated, single-tablet system catalog table in DocDB. This is shown in the figure above.
      The system catalog tablets in DocDB forms a Raft group, which replicates data onto a set of nodes and can tolerate failures. In the figure above, the system catalog tablet leader is shown with a solid border while the followers are shown with a dotted border. This ensures that PostgreSQL can still rely on the familiar system catalog in order to function.

      2. Ready to serve apps

      Once the system catalogs are created, YSQL can be used by applications. Since the data is replicated across nodes and persisted on disk, initdb is not needed on subsequent restarts of the cluster.

      User Table Management

      Now that the YSQL cluster is up and running, let us consider the scenario when a user creates a table. This happens in the following four steps.

      1. Parse and analyze the query

      Just as with PostgreSQL, the query is received by PostgreSQL server process – which parses, analyzes and executes the query.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      2. Route query to tablet leader of DocDB system catalog

      In the case of a regular PostgreSQL, the execution phase would add entries to the system catalog tables and create some directories and files on the local filesystem. In the case of YSQL, this update to the system catalog is sent to the tablet leader of the distributed system catalog table in DocDB.

       

      3. Replicate system catalog entry across nodes in DocDB

      The tablet leader of the distributed system catalog table in DocDB is responsible replicating the update to the followers. This is done using Raft consensus, which ensures that the update is linearizable even in the presence of faults.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      4. Create user table in DocDB

      Now that the entry has been persisted in the system catalog, the next step of the execution phase is to create a distributed DocDB table. This involves creating a number of tablets (which have replicas) across a set of nodes. This is shown in the diagram below.

       

      Once the above steps are complete, the table is ready to use.

      Read/Write IO Path

      The read and write IO paths are quite similar. Let us understand the write IO path, which involves replication of data in DocDB. The read IO path is similar, except for the last step which can serve data directly from the leader of the tablet in DocDB.

      1. Parse and analyze the query

      Just as with PostgreSQL, the PostgreSQL server process receives the query. It then goes through the parser, analyzer, planner and the executor. Some of the planning, analysis and execution steps, however, are different to accommodate a distributed database instead of the local store.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      2. Route the insert to the tablet leader

      The SQL insert statement may end up updating a single row or multiple rows. Although DocDB can handle both cases natively, these two cases are detected and handled differently to improve the performance of YSQL. Single row inserts are routed directly to the tablet leader that owns the primary key of that row. Inserts affecting multiple rows are sent to a global transaction manager which performs a distributed transaction. The single-row insert case is shown below.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      3. Replicate the write through Raft

      In the of single-row inserts, the tablet leader replicates the data using the Raft protocol onto the followers. This simpler case is shown below. In the case of multi-row inserts, the global transaction manager writes multiple records (transaction status records, provisional records, etc) across tablets (often on different nodes). Each of these writes are replicated using Raft consensus. The hybrid logical clock or HLC tracking in the cluster serves as a coarsely synchronized, highly available global clock to coordinate writes. This results in the writes being fault tolerant, with a high-performance system.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      Mapping SQL Tables to Documents

      Each user table in YSQL maps to a corresponding DocDB table with multiple tablets. The YSQL tables come with their own schemas, while all the DocDB tables have the same schema, which is shown below. The actual schema enforcement is done using table schema metadata.

       
       
      1
      DocKey → { Document Value }

      The combined set of primary key column values are used to construct the DocKey above. Each of the value columns (non-primary key columns) are mapped to one attribute in the Document Value above.

      The various YSQL constructs are mapped to suitable DocDB equivalents. This is shown in the table below.

      So how does this look in practice? Let us take an example. Consider the following rather simple table.

       
       
      1
      2
      3
      4
      5
      6
      CREATE TABLE msgs (
          user_id INT,
          msg_id  INT,
          subject TEXT
          msg     TEXT,
      PRIMARY KEY (user_id, msg_id);

      This will correspond to a DocDB table that has a document key to value schema. Now, lets us perform the following insert at time T1.

       
       
      1
      2
      T1: INSERT INTO msgs (user_id, msg_id, subject, msg)
            VALUES ('user1', 10, 'hello', 'hello world');

      This will get translated into the following entries in the DocDB table.

       
       
      1
      2
      3
      4
      5
      DocKey ('user1', 10):
          {
              column_id (subject), T1 -> 'hello',
              column_id (msg), T1 ->  'hello world'
          }

       

      YSQL Benefits

      A YSQL cluster appears as a single logical PostgreSQL database to applications. All nodes in the YSQL layer are identical and application clients can connect to any node in order to read or write data. Along with maximum PostgreSQL compatibility, such an architecture delivers a number of benefits.

      Horizontal Write Scalability

      Since DocDB is capable of being scaled out on demand, a stateless YSQL tier makes it easy to add nodes on demand. This enables rapid scaling of the cluster when more resources (CPU, memory, storage capacity) are required.

      Highly Resilient w/ Native Failover & Repair

      The underlying DocDB cluster is fault-tolerant. This means that node failures do not affect the SQL application using this distributed SQL database. It simply starts communicating to a new node as opposed to native PostgreSQL where the common approach of master-slave replication inevitably leads to manual failover and/or inability to serve recent commits.

      Distributed PostgreSQL on a Google Spanner Architecture – Query Layer

      Geo-Distribution w/ Multi-Region Deployments

      DocDB supports geo-distributed deployments, meaning you can deploy a distributed SQL database across different geographic regions and zone.

      Cloud Native Operations

      DocDB allows dynamically changing nodes of the database with no app impact. Schema changes as well as infrastructure migrations are now zero downtime, even for a SQL database.

      Summary

      Bringing together two iconic database technologies such as Spanner and PostgreSQL into a new open source, cloud native database has been an immensely satisfying engineering achievement. However, we understand that a well-engineered database on its own right does not build trust in the minds of developers and architects. We have to earn that trust using the traditional means of communication, collaboration and sharing of success stories.

      Through this series of posts, we explain our design principles, the tradeoffs associated with those principles, the actual implementation details and finally, the lessons learned especially around some of the more challenging aspects. We intend to prove our claims through exhaustive correctness testing (such as Jepsen) as well as comprehensive performance benchmarking (including TPCC). As we make rapid progress towards YSQL GA this summer, we are working closely with a few of our current users to highlight how YSQL can complement their existing investment in YugaByte DB. If your project can benefit from YSQL as well, don’t hesitate to reach us on our community Slack channel.

      What’s Next?

      • Compare YugaByte DB in depth to databases like CockroachDB, Google Cloud Spanner and MongoDB.
      • Get started with YugaByte DB on macOS, Linux, Docker and Kubernetes.
      • Contact us to learn more about licensing, pricing or to schedule a technical overview.
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/rongfengliang/3124672,作者:rongfengliang,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:两种颜色的球,蓝色和红色,都按1~n编号,共计2n个, 为方便放在一个数组中,红球编号取负,篮球不变,并打乱顺序, 要求同一种颜色的球按编号升序排列

      下一篇:ubuntu安装使用mydumper

      相关文章

      2025-05-06 08:30:38

      【Linux 从基础到进阶】PostgreSQL数据库安装与调优

      PostgreSQL 是一种功能强大的开源关系型数据库管理系统,以其高性能、灵活性和对复杂查询的支持著称。它适用于从小型应用到大型企业级系统的各种场景。

      2025-05-06 08:30:38
      CentOS , PostgreSQL , Ubuntu , 安装 , 数据库
      2024-12-05 08:55:23

      关于PostgreSQL技能树相关内容质量和UI使用建议

      关于PostgreSQL技能树相关内容质量和UI使用建议

      2024-12-05 08:55:23
      PostgreSQL , 内容
      2024-12-03 08:56:33

      postgresql.conf配置详解

      postgresql.conf是PostgreSQL数据库的主要配置文件之一,它包含了各种配置选项,可以用来控制数据库服务器的行为。通过修改postgresql.conf文件中的参数,可以对数据库的性能、安全性和行为进行调优和定制。

      2024-12-03 08:56:33
      conf , postgresql , PostgreSQL
      2024-11-13 09:07:42

      使用Spring Boot和PostgreSQL构建高级查询

      高级查询功能在现代应用中非常重要,尤其是在数据量大且查询需求复杂的情况下。本文将详细介绍如何在Spring Boot中结合PostgreSQL实现这些功能。

      2024-11-13 09:07:42
      Boot , PostgreSQL , Spring
      2024-04-25 09:39:52

      PostgreSQL与Java JDBC数据类型对照

      PostgreSQL与Java JDBC数据类型对照

      2024-04-25 09:39:52
      Java , PostgreSQL
      2023-06-30 08:13:42

      PostgreSQL存储过程介绍

      PostgreSQL存储过程介绍

      2023-06-30 08:13:42
      PostgreSQL , 存储
      2023-05-16 09:43:03

      PostgreSQL数据库的注入

      目录 PostgreSQL PostgreSQL常用查询命令 布尔盲注 错误注入 堆叠注入 时间盲注 联合查询 PostgreSQL

      2023-05-16 09:43:03
      PostgreSQL , 数据库
      2023-03-31 09:58:16

      PostgreSQL

      字符串转数字、数字转时间戳、时间戳转日期字符串:View Code说明:pass_tim1字段类型是字符串类型

      2023-03-31 09:58:16
      PostgreSQL
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5243916

      查看更多

      最新文章

      【Linux 从基础到进阶】PostgreSQL数据库安装与调优

      2025-05-06 08:30:38

      关于PostgreSQL技能树相关内容质量和UI使用建议

      2024-12-05 08:55:23

      PostgreSQL数据库的注入

      2023-05-16 09:43:03

      PostgreSQL

      2023-03-31 09:58:16

      查看更多

      热门文章

      PostgreSQL数据库的注入

      2023-05-16 09:43:03

      PostgreSQL

      2023-03-31 09:58:16

      关于PostgreSQL技能树相关内容质量和UI使用建议

      2024-12-05 08:55:23

      【Linux 从基础到进阶】PostgreSQL数据库安装与调优

      2025-05-06 08:30:38

      查看更多

      热门标签

      数据库 mysql 字符串 数据结构 MySQL 算法 redis oracle java sql python 数据 索引 SQL 查询
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      PostgreSQL

      PostgreSQL数据库的注入

      关于PostgreSQL技能树相关内容质量和UI使用建议

      【Linux 从基础到进阶】PostgreSQL数据库安装与调优

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号