爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割

      首页 知识中心 云计算 文章详情页

      openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割

      2024-09-25 10:15:01 阅读次数:433

      Python,像素点,数据

      第4章 深度估计与分割

      使用深度摄像头的数据来识别前景区域和背景区域。

      4.1 创建模块

      cameo中的捕获和处理摄像头的代码可以重用,所以讲这部分代码分离放在depth.py中。

       4.2 捕获深度摄像头的帧

      深度相关通道的概念

      深度图:灰度图像;每个像素值都是摄像头到物体表面之间距离的估计值。

      点云图:彩色图像;每种颜色对应一个(x、y、z)维度空间。

      视差图:灰度图像;每个像素值代表物体表面的立体视差。(立体视差:同一场景在不同视角下感觉不同。针对两个物体之间任一相互对应的两个像素点,可以度量这些像素点之间的距离,这个度量度量就是立体视差。离摄像头近的立体视差小,远的大。因此近距离的物体在视差图中会更明亮)。

      有效深度掩模:表明一个给定的像素的深度信息是否有效(有效非0,无效为0)。比如,如果深度摄像头依赖红外闪光灯,那么灯光被遮挡处就无效。

      4.3 从视差图得到掩模

      4.4 对复制操作执行掩模

      4.5 用普通摄像头进行深度估计

      4.6 使用分水岭和GrabCut算法进行物体分割

      GrabCut算法实现步骤:

      1.定义矩形:在图片中定义含有物体的矩形。

      2.定义背景:矩形外的被自动认为是背景。

      3.区别前景和背景

      4.建模,标记未定义像素:用高斯混合模型对背景和前景建模,并将未定义的像素标记为可能的前景或背景。

      5.相邻边:每一个像素都被看作通过虚拟边和周围像素相连接,每条边都有一个属于前景或背景的概率,概率基于它与周围像素颜色上的相似性。

      6.连接像素:每一个像素会与一个前景或背景节点相连接。

      7.节点连接后,若节点之间的边属于不同终端,则会切断他们之间的边,这就能将图像各部分分割出来。

      实例:

      import numpy as np
      import cv2
      from matplotlib import  pyplot as plt

      #加载图像
      img = cv2.imread('statue_small.jpg')
      #创建同形状的掩模
      mask = np.zeros(img.shape[:2],np.uint8)
      #创建以0填充的前景和背景模型
      bgdModel = np.zeros((1,65),np.float64)
      fgdModel = np.zeros((1,65),np.float64)

      rect = (100,50,421,378)
      cv2.grabCut(img,mask,rect,bgdModel,fgdModel,5,
                  cv2.GC_INIT_WITH_RECT)
      #将掩模值为0和2的转换成0,过滤掉0值像素
      mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
      img = img*mask2[:,:,np.newaxis]

      #显示图片
      plt.subplot(121), plt.imshow(img)
      plt.title('grabcut'), plt.xticks([]),plt.yticks([])
      plt.subplot(122),plt.imshow(cv2.cvtColor(cv2.imread('statue_small.jpg'),
                                               cv2.COLOR_BGR2RGB))
      plt.title('original'), plt.xticks([]),plt.yticks([])
      plt.show()

      4.6.2 使用分水岭算法进行图像分割

      分水岭算法:

      把图像中低密度(变化少)的区域想象成山谷,高密度的区域想象成山峰。

      开始向山谷中注入水,直到不同山谷中的水开始汇聚。

      为了阻止不同山谷的水汇聚,可以设置一些栅栏,最后得到的栅栏就是图像分割。

       import numpy as npimport cv2from matplotlib import  pyplot as plt#加载图片,转换为灰度图片img = cv2.imread("lion.jpg") gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#为图像设置一个阈值,这个操作将图像分为两部分:黑色部分和白色部分ret, thresh = cv2.threshold(     gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)#通过morphologyEx变换来去除噪声数据。这是一种对图像进行膨胀之后再进行腐蚀的操作,它可以提取图像特征kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations=2)#通过morphologyEx变换之后的图像进行膨胀,得到背景区域sure_bg = cv2.dilate(opening,kernel,iterations=3)#通过distanceTransform获取前景区域dist_transfrom = cv2.distanceTransform(opening,cv2.DIST_L2,5) ret,sure_fg  =  cv2.threshold(dist_transfrom,0.7*dist_transfrom.max(),255,0)#找到前景和背景重合部分sure_fg = np.uint8(sure_fg) unkown = cv2.subtract(sure_bg,sure_fg)#ret,markers = cv2.connectedComponents(sure_fg)#在背景区域加1,将unkown区域设置为0markers = markers+1 markers[unkown==255] = 0#让水漫起来将栅栏绘成红色markers = cv2.watershed(img,markers) img[markers==-1] = [255,0,0] plt.imshow(img) plt.show()

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/pigeon/5452705,作者:一只大鸽子,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:树莓派部署Elasticsearch6集群

      下一篇:初学Android,数据存储之使用SQLite数据库(四十六)

      相关文章

      2025-05-19 09:04:53

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      2025-05-19 09:04:53
      存储 , 数据 , 数据恢复 , 解压
      2025-05-16 09:15:10

      画图时使用的函数和一些错误处理

      画图时使用的函数和一些错误处理

      2025-05-16 09:15:10
      数据
      2025-05-14 10:33:25

      超级好用的C++实用库之国密sm4算法

      国密SM4算法,全称为国家密码管理局制定的SM4分组密码算法,是中国自主设计的商用密码算法标准之一,用于数据的对称加密。

      2025-05-14 10:33:25
      加密 , 参数 , 数据 , 模式 , 解密
      2025-05-14 10:33:16

      30天拿下Python之使用Json

      Json的英文全称为JavaScript Object Notation,中文为JavaScript对象表示法,是一种存储和交换文本信息的语法,类似XML。Json作为轻量级的文本数据交换格式,比XML更小、更快,更易解析,也更易于阅读和编写。

      2025-05-14 10:33:16
      json , Json , Python , 字符串 , 对象 , 序列化 , 转换
      2025-05-14 10:33:16

      30天拿下Python之文件操作

      Python是一种高级编程语言,它提供了许多内置函数和模块来处理文件操作,主要包括:打开文件、读取文件、写入文件、关闭文件、获取目录列表等。

      2025-05-14 10:33:16
      Python , 使用 , 函数 , 文件 , 权限 , 目录
      2025-05-14 10:07:38

      30天拿下Python之迭代器和生成器

      在Python中,迭代器是一个非常重要的概念,它使得我们能够遍历一个序列而无需使用索引。迭代器不仅限于列表、元组、字符串等,我们也可以创建自定义的迭代器对象。

      2025-05-14 10:07:38
      Python , 使用 , 函数 , 生成器 , 返回 , 迭代 , 遍历
      2025-05-14 10:07:38

      30天拿下Rust之引用

      在Rust语言中,引用机制是其所有权系统的重要组成部分,它为开发者提供了一种既高效又安全的方式来访问和共享数据。引用可以被视为一个指向内存地址的指针,它允许我们间接地访问和操作存储在内存中的数据。

      2025-05-14 10:07:38
      Rust , text , 可变 , 引用 , 数据
      2025-05-14 10:07:38

      30天拿下Rust之所有权

      在编程语言的世界中,Rust凭借其独特的所有权机制脱颖而出,为开发者提供了一种新颖而强大的工具来防止内存错误。这一特性不仅确保了代码的安全性,还极大地提升了程序的性能。

      2025-05-14 10:07:38
      data , Rust , 内存 , 函数 , 变量 , 数据
      2025-05-14 10:03:13

      超级好用的C++实用库之Base64编解码

      Base64是一种编码方式,用于将二进制数据转换为可打印的ASCII字符。这种编码方式常用于在HTTP协议等应用中传输二进制数据,比如:图片、音频、视频等。

      2025-05-14 10:03:13
      Base64 , 字符串 , 数据 , 编码 , 长度
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5221300

      查看更多

      最新文章

      【边缘计算与IoT】边缘计算的概念和在IoT中的应用

      2025-05-08 09:03:07

      【计算机网络】第三章·数据链路层与局域网/广域网

      2025-05-07 09:09:52

      javascript 西瓜一期 05-08 计算机的基本组成

      2025-04-09 09:14:24

      机器学习项目的流程:从数据到部署

      2025-04-09 09:13:17

      低代码开发重要工具:jvs-logic(逻辑引擎)可视化设计要素

      2025-03-31 08:49:58

      分布式存储技术

      2025-03-28 07:42:50

      查看更多

      热门文章

      Python数据分析与展示:科学计算基础库numpy-1

      2023-03-02 06:12:43

      Python使用numpy与pandas计算数组元素的变化率

      2023-04-17 10:55:24

      Python 计算与伪造TCP序列号

      2023-06-21 06:40:36

      【计算机算法设计与分析】快速排序(C++_分治递归)

      2023-07-11 08:54:35

      Open3d Point cloud outlier removal 点云异常值移除

      2023-02-27 09:14:47

      Python21天学习挑战---day15 Python科学计算三剑客简介

      2023-04-25 10:22:50

      查看更多

      热门标签

      系统 测试 用户 分布式 Java java 计算机 docker 代码 数据 服务器 数据库 源码 管理 python
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      【C深度解剖】计算机数据下载和删除原理

      【边缘计算与IoT】边缘计算的概念和在IoT中的应用

      机器学习项目的流程:从数据到部署

      【计算机网络】网络模型及协议

      基于SpringBoot+Vue的动漫手办商城的详细设计和实现(源码+lw+部署文档+讲解等)

      Java与机器学习模型的集成与部署

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号