爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Python|燃气火焰检测主要步骤

      首页 知识中心 软件开发 文章详情页

      Python|燃气火焰检测主要步骤

      2023-02-15 10:01:11 阅读次数:482

      像素点,灰度,python

      问题描述

      在现有的基础上,燃气火焰的检测主要是基于火焰颜色特征,由于燃气火焰不同于普通火焰,其中蓝色分量较多,一般的检测方法准确度不够,故采取其他方法来检测火焰,下面主要介绍4个步骤的思路和主要的python代码。

      解决方案

      1 背景差分法分离火焰

      (1)算法思路

      背景差分法的主要思想是利用无火焰的背景图与含有火焰的图片作像素点对像素点的差分处理,需要注意的是,背景差分法运用时由于需要做差分处理,所以需要将三维的RGB图像转化为一维的灰度图像。因为当相同背景的像素点做差分后该像素点的灰度值为0,也就是黑色,而有火焰的像素点和背景做差分后的灰度值不为零,也就将火焰部分分离了出来。

      (2)Python代码


      def chafenfa(img1,img2):#此时的img1和img2应该是灰度化之后的图像

               r1,c1=img1.shape

              new_image = np.zeros((r1, c1)) #构建一维数组,用于存放新的图像数据

              for i in range(r1):

                      for j in range(c1):

                              new_image[i][j]=abs(img1[i][j]-img2[i][j]) 

              return np.uint8(new_image)


      2 滤波增强火焰图像

      (1)算法思路

      差分法处理过的图像还存在一些噪声,所以需要对图像进行线性滤波;同时,由于图像火焰不够明显,所有还需要增强图像中的火焰区域。滤波和增强的基本思路取决于噪声和需要增强部分的区域特点,噪声的特点是周围大部分都是背景色,且区域较小;增强部分的图像特点是周围是和自身差别不大的主体区域,且区域明显。所以,在进行滤波时,可以利用噪声点周围的背景色进行消除,增强的操作也可以利用像素点周围局部部分来进行。因此,只需要选择合适的滤波算子,对图像进行卷积操作,就可以同时达到消除噪声和增强图像的效果,这里采用的是的Laplace算子作为卷积核进行对图像的滤波和增强。

      Python|燃气火焰检测主要步骤


      def Laplace_suanzi(img):#此时img为差分法处理后的灰度图片

        r, c = img.shape

        new_image = np.zeros((r, c))#构建一维数组,用于存放新的图像数据

        #L_sunnzi = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]])#第一种算子   

        L_sunnzi = np.array([[1,1,1],[1,-8,1],[1,1,1]])#第二种算子

      #由于涉及到边界,所以遍历时需要少2行2列。  

        for i in range(r-2):

          for j in range(c-2):

            new_image[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * L_sunnzi))

        return np.uint8(new_image)



      3 Otsu方法分割图像

      (1)算法思路

      Otsu不同于传统的二值化图像方法,它最大的特点是阈值是根据图片自适应的,从而避免了单一阈值造成的分割图像与目标图像差距太大的问题,Otsu算法以目标和背景的方差最大来动态的确定图像的分割阈值。

      对于图像 Img(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为 ω0,平均灰度为 μ0;背景像素点数占整幅图像的比例为 ω1,平均灰度为 μ1;整幅图像的平均灰度记为μ,类间方差记为g。

      假设图像大小为M×N,图像中像素的灰度值小于阈值 T 的像素个数为 N0,像素灰度大于阈值T的像素个数为 N1,那么:

      *1 ω0=N0/ M×N                

      *2 ω1=N1/ M×N     

      *3 N0+N1=M×N            

      *4 ω0+ω1=1     

      *5 μ=ω0*μ0+ω1*μ1

      *6 g=ω0(μ0-μ)^2+ω1(μ1-μ)^2                

      *7 g=ω0ω1(μ0-μ1)^2 

      采用遍历的方法使得类间方差g最大的阈值T,即为所求。

      (2)Python代码


      def otsu_img(img): 

         max_g = 0

          best_T= 0

          r,c=img.shape

          N=r*c

          for T in range(256):

              n0 = img[:T].sum()  # 阈值以下像素总数(前景) 

              n1 = img[T:].sum()  # 阈值以上像素总数(背景)

              w0 = n0 / N  # 阈值以下像素数量占的比例(前景)

              w1 = n1 / N  # 阈值以上像素数量占的比例(背景)

              # 阈值以下平均灰度(前景) 

              u0 = 0 

              for i in range(T): 

                      u0 += i * img[i]

              # 阈值以上平均灰度(背景) 

              u1 = 0

              for i in range(T, 256): 

                      u1 += i * img[i]

              # u = u0 * w0 + u1 * w1

              g = w0 * w1 * np.power((u0 - u1), 2)

              if g > max_g:

                      max_g = g

                  best_T=T

          for i in range(r): 

                  for j in range(c): 

                          if img[i][j]<best_T:

                                  img[i][j]=0 

                          ‍else: 

                                  img[i][j]=255


      4 腐蚀与去除噪声

      (1)算法思路

      腐蚀的原理是通过结构元素与目标元素比较,保留那些可以完全包含结构元素区域的中心点,再使用结构元素去填充,最后达到消除边缘噪声的目的。

      腐蚀的原理是通过结构元素与目标元素比较,保留那些可以完全包含结构元素区域的中心点,再使用结构元素去填充,最后达到消除边缘噪声的目的。

      (2)Python代码


      #腐蚀(以2*2的结构元素为代表)

      def dilation(img):#此时图像是二值化之后的图像,即只有0、1两个灰度值

          kernel=np.ones((2,2),np.uint8)#构建全是1的2*2数组

          r,c =img.shape

          for i in range(r-1):

              for j in range(c-1):

                  if img[i+2][j+2].sum ==kernel.sum:#由于img图像中只有0和1,所以当它们区域和相等时,即完全重合

                      img[i][j]=img[i][j]

                  else:

                      img[i][j]==0

      return img

      (以2*2的结构元素为代表)

      def erosion(img):

      kernel=np.ones((2,2),np.uint8)

      r,c =img.shape

          for i in range(r-1):

              for j in range(c-1):

                  if sum(img[i+2][j+2]*kernel):#只要它们卷积和不为零,即可认为有交集。

                      img[i][j]=img[i][j]

                  else:

                      img[i][j]==0

          return img


      结语

      对于上面的主要步骤,其中有一些可以使用cv2内置函数完成,但为了更理解算法原理,并没有使用过多的内置函数,且上述腐蚀只针对与二值化过后的图像有效果,总体还有待改进。

      END

      编辑   |   王文星

      责       编   |   饶龙江

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/where2go/5000148,作者:算法与编程之美,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:《Spring Boot官方指南》28.安全

      下一篇:数据实测告诉你:不要人云亦云的瞎说EXISTS 与 in 的区别

      相关文章

      2025-05-19 09:04:22

      gray_dilation_rect

      gray_dilation_rect

      2025-05-19 09:04:22
      byte , img , 灰度
      2025-04-14 09:24:23

      python打印宝塔代码

      python打印宝塔代码

      2025-04-14 09:24:23
      python
      2025-04-09 09:16:56

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56
      python , 代码 , 方法 , 机器学习 , 示例
      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42
      debug , log4j , logback , logging , python
      2025-04-09 09:16:42

      python简单介绍及基础知识(一)

      编程语言,是用来实现某种功能的编写给计算机读取和执行的语言

      2025-04-09 09:16:42
      print , python , 下划线 , 变量 , 变量名 , 编程语言 , 语言
      2025-04-09 09:16:00

      使用Python扩展PAM(part 2)

      在上篇part1 中编译的pam_python.so可以用Python代码进行一些额外的验证操作。动态密码,虚拟账号,都是可行的,只要编写的python鉴权脚本符合相应的PAM规范即可使用。

      2025-04-09 09:16:00
      python , 使用 , 密码 , 配置
      2025-04-09 09:13:27

      1行Python代码,把Excel转成PDF,python-office功能更新~

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27
      Excel , pdf , python , 代码 , 程序员
      2025-04-09 09:13:17

      python性能测试之pyperformance

      python性能测试之pyperformance

      2025-04-09 09:13:17
      json , python , Python , 性能 , 文档 , 测试
      2025-04-09 09:13:17

      IronPython 与 c# 交互之导入Python模块的两种方法

      当我们要在C#中调用python时,有时候需要用到python里的一些函数,比如进行一些数学运算,开方,取对数,这个时候我们需要用到python里的math模块(类似C#的命名空间,但概念不完全一样).

      2025-04-09 09:13:17
      python , 函数 , 导入 , 方法 , 模块
      2025-04-07 10:28:48

      一篇文章带你剖析Python 字节流处理神器struct

      一篇文章带你剖析Python 字节流处理神器struct

      2025-04-07 10:28:48
      python
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5246347

      查看更多

      最新文章

      python打印宝塔代码

      2025-04-14 09:24:23

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56

      python简单介绍及基础知识(一)

      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42

      使用Python扩展PAM(part 2)

      2025-04-09 09:16:00

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27

      查看更多

      热门文章

      Linux实用命令authconfig和authconfig-tui(备忘)

      2023-03-16 07:49:58

      Python高级变量类型

      2024-09-24 06:30:08

      python学习——面向对象编程

      2023-04-25 10:20:57

      一个简单的http server,处理get和post请求,Python实现

      2023-04-13 09:31:09

      Python数据库测试实战教程

      2023-06-07 07:31:52

      Python编程:生成器yield与yield from区别简单理解

      2023-02-21 03:02:11

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      从样本中抽样的Python技术

      Python编程:从python中理解面向对象

      python字典开发三级菜单

      Python基础教程(第3版)中文版 第19章 趣味编程 (笔记)

      常用的Python内置函数

      Python零基础入门-6 模块和包

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号