爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      首页 知识中心 软件开发 文章详情页

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      2023-07-07 07:51:05 阅读次数:427

      数据,JVM

      NIO与内存映射文件

      Java类库中的NIO包相对于IO包来说有一个新功能就是 【内存映射文件】,在业务层面的日常开发过程中并不是经常会使用,但是一旦在处理大文件时是比较理想的提高效率的手段,之前已经在基于API和开发实战角度介绍了相关的大文件读取以及NIO操作的实现,而本文主要想结合操作系统(OS)底层中相关方面的内容进行分析原理,夯实大家对IO模型及操作系统相关的底层知识体系。

      下图就是Java应用程序以及操作系统OS内核的调用关系图:

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      我们会针对于操作系统与应用程序之间建立的关系去分析IO处理底层机制。

      传统的IO技术

      在传统的文件IO操作中, 我们都是调用操作系统提供的底层标准IO系统调用函数read()、write() , 此时调用此函数的进程(Java进程) 由当前的用户态切换到内核态, 然后OS的内核代码负责将相应的文件数据读取到内核的IO缓冲区,然后再把数据从内核IO缓冲区拷贝到进程的私有地址空间中去,这样便完成了一次IO操作,如下图所示。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      程序的局部性原理

      为什么需要内核IO缓冲区

      至于为什么要多此一举搞一个内核IO缓冲区把原本只需一次拷贝数据的事情搞成需要2次数据拷贝呢?

      IO拷贝的预先局部拷贝

      为了减少磁盘的IO操作,为了提高性能而考虑的,因为我们的程序访问一般都带有局部性,也就是所谓的局部性原理,在这里主要是指的空间局部性,即我们访问了文件的某一段数据,那么接下去很可能还会访问接下去的一段数据,由于磁盘IO操作的速度比直接访问内存慢了好几个数量级,所以OS根据局部性原理会在一次read(系统调用过程中预读更多的文件数据缓存在内核IO缓冲区中, 当继续访问的文件数据在缓冲区中时便直接拷贝数据到进程私有空间, 避免了再次的低效率磁盘IO操作。

      应用程序IO操作实例

      在Java中当我们采用IO包下的文件操作流,如:

      FileInputStream in=new FileInputStream("/usr/text") ;
      in.read();

      JAVA虚拟机内部便会调用OS底层的read()系统调用完成操作, 在第二次调用read()的时候很可能就是从内核缓冲区直接返回数据了,此外还有可能需要经过native堆做一次中转,因为这些函数都被声明为native, 即本地方法, 所以可能在C语言中有做一次中转, 如win32/win64中就是通过C语言从OS读取数据, 然后再传给JVM内存 。

      系统调用与应用程序

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      既然如此, Java-IO包中为啥还要提供一个BufferedInputStream类来作为缓冲区呢,关键在于四个字, "系统调用",当读取OS内核缓冲区数据的时候, 便发起了一次系统调用操作(通过native的C函数调用),而系统调用的代价相对来说是比较高的,涉及到进程用户态和内核态的上下文切换等一系列操作,所以我们经常采用如下的包装:

      File ln put Stream in=new FileInputStream("/user/txt") ;
      BufferedInputStream buf in=new BufferedInputStream(in) ;
      buf in.read();
      通过Buffer减少系统调用次数(经常被理解错误)
      • 有了Buffer缓存,我们每一次in.read() 时候, BufferedInputStream会根据情况自动为我们预读更多的字节数据到它自己维护的一个内部字节数组缓冲区中,这样我们便可以减少系统调用次数, 从而达到其缓冲区的目的。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      • 所以要明确的一点是BufferedInputStream的作用不是减少磁盘IO操作次数,因为操作系统OS已经帮我们完成了,而是通过减少系统调用次数来提高性能的。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      • 同理BufferedOuputStream, BufferedReader/Writer也是一样的。在C语言的函数库中也有类似的实现, 如,fread()是C语言中的缓冲IO, 与BufferedInputStream()相同.
      BufferedInputStream分析

      从上面的源码我们可以看到,BufferedInputStream内部维护着一个字节数组byte[] buf来实现缓冲区的功能,调用的buf的in.read()方法在返回数据之前有做一个if判断, 如果buf数组的当前索引不在有效的索引范围之内, 即if条件成立, buf字段维护的缓冲区已经不够了, 这时候会调用内部的fill()方法进行填充, 而fill()会预读更多的数据到buf数组缓冲区中去, 然后再返回当前字节数据, 如果if条件不成立便直接从buf缓冲区数组返回数据了。

      BufferedInputStream的buff的可见性

      对于read方法中的getBufIfOpen()返回的就是buf字段的引用,源码中的buf字段声明为 ​​protected volatile byte buf;​​主要是为了通过volatile关键字保证buf数组在多线程并发环 境中的内存可见性.

      内存映射文件的实现

      内存映射文件和之前说的标准IO操作最大的不同之处就在于它虽然最终也是要从磁盘读取数据,但是它并不需要将数据读取到OS内核缓冲区,而是直接将进程的用户私有地址空间中的一部分区域与文件对象建立起映射关系,就好像直接从内存中读、写文件一样,速度当然快了,如下图所示。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      Linux中的进程虚拟存储器, 即进程的虚拟地址空间, 如果你的机子是32位,那么就有2^32=4G的虚拟地址空间,我们可以看到图中有一块区域:

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      “Memory mapped region for shared libraries”

      这段区域就是在内存映射文件的时候将某一段的虚拟地址和文件对象的某一部分建立起映射关系,此时并没有拷贝数据到内存中去,而是当进程代码第一次引用这段代码内的虚拟地址时,触发了缺页异常,这时候OS根据映射关系直接将文件的相关部分数据拷贝到进程的用户私有空间中去,当有操作第N页数据的时候重复这样的OS页面调度程序操作。

      内存映射文件的优点

      内存映射文件的效率比标准IO高的重要原因就是因为少了把数据拷贝到OS内核缓冲区这一步(可能还少了native堆中转这一步) 。

      Java中提供了3种内存映射模式:只读(readonly) 、读写(read_write) 、专用(private) 。

      只读(readonly) 模式

      对于只读模式来说,如果程序试图进行写操作,则会抛出Readonly Buffer Exception异常。

      read_write模式
      NIO的read_write模式

      read_write读写模式表明了通过内存映射文件的方式写或修改文件内容的话是会立刻反映到磁盘文件中去的,别的进程如果共享了同一个映射文件,那么也会立即看到变化!

      标准IO的read_write模式

      标准IO那样每个进程有各自的内核缓冲区, 比如Java代码中, 没有执行IO输出流的flush()或者close()操作, 那么对文件的修改不会更新到磁盘去, 除非进程运行结束。

      专用模式

      专用模式采用的是OS的“写时拷贝”原则,即在没有发生写操作的情况下,多个进程之间都是共享文件的同一块物理内存(进程各自的虚拟地址指向同一片物理地址),一旦某个进程进行写操作,那么将会把受影响的文件数据单独拷贝一份到进程的私有缓冲区中,不会反映到物理文件中去。

      File file=new File("/usr/txt") ;
      FileInputStream in=new FileInputStream(file) ;
      File Channel channel=in.getChannel();
      MappedByteBuffer buff=channel.map(File Channel.Map Mode.READ_ONLY, 0, channel.size 0) ;

      这里创建了一个只读模式的内存映射文件区域, 接下来我就来测试下与普通NIO中的通道操作相比性能上的优势,先看如下代码:

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      输出为63,即通过内存映射文件的方式读取86M多的文件只需要78毫秒,我现在改为普通 NIO的通道操作看下:

      File file=new File("/usr/txt") ;
      FileInputStream in=new FileInputStream(file) ;
      File Channel channel=in.getChannel();
      ByteBuffer buff=ByteBuffer.allocate(1024) ;
      long begin=System.currentTimeMillis();
      while(channel.read(buff) !=-1) {
      buff.flip 0;
      buff.clear 0;
      long end=System.currentTimeMillis();
      System.out.print In("time is:"+(end-begin) ) ;

      输出为468毫秒,几乎是6倍的差距,文件越大,差距便越大。

      内存映射的使用场景

      内存映射特别适合于对大文件的操作, JAVA中的限制是最大不得超过Integer.MAXVALUE, 即2G左右, 不过我们可以通过分次映射文件(channel.map) 的不同部分来达到操作整个文件的目的。

      内存映射的优势特点

      内存映射属于JVM中的直接缓冲区, 还可以通过ByteBuffer.allocateDirect, 即Direct Memory的方式来创建直接缓冲区。

      相比基础的IO操作来说就是少了中间缓冲区的数据拷贝开销,同时他们属于JVM堆外内存, 不受JVM堆内存大小的限制。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      其中Direct Memory默认的大小是等同于JVM最大堆, 理论上说受限于进程的虚拟地址空间大小, 比如32位的windows上, 每个进程有4G的虚拟空间除去2G为OS内核保留外, 再减去JVM堆的最大值, 剩余的才是Direct Memory大小。

      通过设置JVM参数-Xmx64M, 即JVM最大堆为64M, 然后执行以下程序可以证明Direct Memory不受JVM堆大小控制:

      public static void main(String args) {
      ByteBuffer.allocateDirect(1024*1024*100) ; //100MB
      }

      输出结果如下:

      [GC1371K->1328K(61312K) , 0.0070033secs][Full GC1328K->1297K(61312K),0.0329592secs]
      [GC3029K->2481K(61312K) , 0.0037401secs][Full GC2481K->2435K(61312K) , 0.0102255secs]

      看到这里执行GC的次数较少, 但是触发了两次Full GC, 原因在于直接内存不受GC(新生代的Minor GC) 影响, 只有当执行老年代的Full GC时候才会顺便回收直接内存!而直接内存是通过存储在JVM堆中的Direct ByteBuffer对象来引用的, 所以当众多的Direct ByteBuffer对象从新生代被送入老年代后才触发了full gc。再看直接在JVM堆上分配内存区域的情况:

      public static void main(String~args) {
      for(inti=0; i<10000; i++) {
      ByteBuffer.allocate(1024*100) ; //100K
      }
      }

      ByteBuffer.allocate意味着直接在JVM堆上分配内存, 所以受新生代的Minor GC影响, 输出如下:

      [GC16023K->224K(61312K) , 0.0012432secs][GC16211K->192K(77376K) , 0.0006917secs][GC32242K->176K(77376K) , 0.0010613secs][GC32225K->224K(109504K) , 0.0005539secs][GC64423K->192K(109504K) , 0.0006151secs][GC64376K->192K(171392K, 0.0004968secs][GC128646K->204K(171392K) , 0.0007423secs][GC128646K->204K(299968K) , 0.0002067secs][GC257190K->204K(299968K) , 0.0003862secs][GC257193K->204K(287680K) , 0.0001718secs][GC245103K->204K(276480K) , 0.0001994secs][GC233662K->204K(265344K) , 0.0001828secs][GC222782K->172K(255232K) , 0.0001998secs][GC212374K->172K(245120K) , 0.0002217secs]

      可以看到, 由于直接在JVM堆上分配内存, 所以触发了多次GC, 且不会触及Full GC, 因为对象根本没机会进入老年代。

      Direct Memory和内存映射

      NIO中的Direct Memory和内存文件映射同属于直接缓冲区, 但是前者和-Xmx和-XX:MaxDirectMemorySize有关, 而后者完全没有JVM参数可以影响和控制,这让我不禁怀疑两者的直接缓冲区是否相同。

      Direct Memory

      Direct Memory指的是JAVA进程中的native堆, 即涉及底层平台如win 32的dII部分, 因为C语言中的malloc) 分配的内存就属于native堆, 不属于JVM堆,这也是Direct Memory能在一些场景中显著提高性能的原因, 因为它避免了在native堆和jvm堆之间数据的来回复制;

      内存映射

      内存映射则是没有经过native堆, 是由JAVA进程直接建立起某一段虚拟地址空间和文件对象的关联映射关系, 参见Linux虚拟存储器图中的“Memory mapped region for shared libraries”区域, 所以内存映射文件的区域并不在JVM GC的回收范围内, 因为它本身就不属于堆区, 卸载这部分区域只能通过系统调用unmap()来实现(Linux)中, 而JAVA API只提供了FileChannel.map的形式创建内存映射区域, 却没有提供对应的unmap(), 让人十分费解, 导致要卸载这部分区域比较麻烦。

      Direct Memory和内存映射结合所实现的案例

      通过Direct Memory来操作前面内存映射和基本通道操作的例子, 来看看直接内存操作的话,程序的性能如何:

      File file=new File("/usr/txt") ;
      FileInputStream in=new FilelnputStream(file) ;
      FileChannel channel=in.getChannel 0;
      ByteBuffer buff=ByteBuffer.allocateDirect(1024) ;
      long begin=System.currentTimeMillis(;
      while(channel.read(buff) !=-1) {
      buff.flip();
      buff.clear();
      long end=System.currentTimeMillis();
      System.out.printIn("time is:"+(end-begin) );
      }

      程序输出为312毫秒, 看来比普通的NIO通道操作(468毫秒) 来的快, 但是比mmap内存映射的63秒差距太多了, 通过修改; ByteBuffer buff=ByteBuffer.allocateDirect(1024) ;

      ByteBuffer buff=ByteBuffer.allocateDirect((in) file.length 0) , 即一次性分配整个文件长度大小的堆外内存,最终输出为78毫秒,由此可以得出堆外内存的分配耗时比较大,还是比mmap内存映射来得慢。

      Direct Memory的内存回收(非常重要总结)

      最后一点为Direct Memory的内存只有在JVM执行full gc的时候才会被回收, 那么如果在其上分配过大的内存空间, 那么也将出现OOM, 即便JVM堆中的很多内存处于空闲状态。

      作者推荐 | 【Java难点攻克】「NIO和内存映射性能提升系列」彻底透析NIO底层的内存映射机制原理与Direct Memory的关系

      JVM堆内存的限制范围

      关于JVM堆大小的设置是不受限于物理内存, 而是受限于虚拟内存空间大小,理论上来说是进程的虚拟地址空间大小,但是实际上我们的虚拟内存空间是有限制的, 一般windows上默认在C盘, 大小为物理内存的2倍左右。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/alex4dream/5928149,作者:洛神灬殇,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:精华推荐 | 【深入浅出RocketMQ原理及实战】「性能原理挖掘系列」透彻剖析贯穿RocketMQ的事务性消息的底层原理并在分析其实际开发场景

      下一篇:R语言线性分类判别LDA和二次分类判别QDA实例

      相关文章

      2025-05-19 09:04:53

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      2025-05-19 09:04:53
      存储 , 数据 , 数据恢复 , 解压
      2025-05-16 09:15:10

      画图时使用的函数和一些错误处理

      画图时使用的函数和一些错误处理

      2025-05-16 09:15:10
      数据
      2025-05-14 10:33:25

      超级好用的C++实用库之国密sm4算法

      国密SM4算法,全称为国家密码管理局制定的SM4分组密码算法,是中国自主设计的商用密码算法标准之一,用于数据的对称加密。

      2025-05-14 10:33:25
      加密 , 参数 , 数据 , 模式 , 解密
      2025-05-14 10:07:38

      30天拿下Rust之引用

      在Rust语言中,引用机制是其所有权系统的重要组成部分,它为开发者提供了一种既高效又安全的方式来访问和共享数据。引用可以被视为一个指向内存地址的指针,它允许我们间接地访问和操作存储在内存中的数据。

      2025-05-14 10:07:38
      Rust , text , 可变 , 引用 , 数据
      2025-05-14 10:07:38

      30天拿下Rust之所有权

      在编程语言的世界中,Rust凭借其独特的所有权机制脱颖而出,为开发者提供了一种新颖而强大的工具来防止内存错误。这一特性不仅确保了代码的安全性,还极大地提升了程序的性能。

      2025-05-14 10:07:38
      data , Rust , 内存 , 函数 , 变量 , 数据
      2025-05-14 10:03:13

      arm架构下JAVA开发

      ARM(Advanced RISC Machine)是一种基于精简指令集计算(RISC)设计的处理器架构。它以高效、节能著称,因此广泛应用 于从智能手机到物联网设备的各个领域。

      2025-05-14 10:03:13
      Java , JVM , 嵌入式 , 架构 , 设备
      2025-05-14 10:03:13

      超级好用的C++实用库之Base64编解码

      Base64是一种编码方式,用于将二进制数据转换为可打印的ASCII字符。这种编码方式常用于在HTTP协议等应用中传输二进制数据,比如:图片、音频、视频等。

      2025-05-14 10:03:13
      Base64 , 字符串 , 数据 , 编码 , 长度
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:58

      超级好用的C++实用库之字节流解析器

      字节流解析器是一种软件组件,它负责将接收到的原始二进制数据(字节流)转换为有意义的信息结构或格式。在计算机网络、文件处理和数据通信中,字节流是最基本的数据传输形式,但这些原始字节对于应用程序通常是没有直接意义的,需要通过特定的解析规则来解读。

      2025-05-14 10:02:58
      true , 参数 , 字节 , 数据 , 获取 , 解析器 , 返回值
      2025-05-14 10:02:58

      java项目多端数据同步解决方案

      多端数据同步是指在多个设备(例如桌面应用、移动应用、Web应用)之间保持数据的一致性。

      2025-05-14 10:02:58
      java , Spring , WebSocket , 同步 , 数据 , 版本号
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5241124

      查看更多

      最新文章

      超级好用的C++实用库之国密sm4算法

      2025-05-14 10:33:25

      arm架构下JAVA开发

      2025-05-14 10:03:13

      超级好用的C++实用库之Base64编解码

      2025-05-14 10:03:13

      超级好用的C++实用库之字节流解析器

      2025-05-14 10:02:58

      java项目多端数据同步解决方案

      2025-05-14 10:02:58

      变量基础_变量场景

      2025-05-13 09:49:27

      查看更多

      热门文章

      Python|斐波那契数列

      2023-02-27 10:01:21

      游戏编程之十一 图像页CPICPAGE介绍

      2022-11-28 01:25:04

      PHP:将list列表转为tree树形数据

      2023-02-28 08:23:26

      数据结构与算法之七 栈

      2022-11-17 12:37:20

      Python编程:Crypto模块RSA非对称加密

      2023-02-15 10:02:30

      Java-技术专区-虚拟机系列-JVM最多能创建多少个线程: unable to create new native thread

      2023-02-21 08:02:44

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      Python:kazoo模块与Zookeeper交互

      java8新特性(六)元空间

      【JVS低代码开发平台】支持纯手工配置的数据加工、处理、展现的数据仓库

      别再手动验证数据了!Python + JSONSchema,一键搞定

      用Python实现数据筛选与匹配

      一个VC写的完整、简单的Sniffer代码

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号