爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Python21day学习---numpy基础操作----day18

      首页 知识中心 软件开发 文章详情页

      Python21day学习---numpy基础操作----day18

      2023-05-05 09:58:01 阅读次数:481

      numpy,Python

      一、Numpy 介绍

      Numpy (Numerical Python) 是一个开源的 Python 科学计算库,用于快速处理任意维度的数组。 Numpy 支持常见的数组和矩阵操作。

      对于同样的数值计算任务,使用 Numpy 比直接使用 Python 要简洁的多。

      Numpy 使用 ndarray 对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

       

      二、Ndarray 介绍

      NumPy 提供了一个N维数组类型 ndarray ,它描述了相同类“items” 的集合。

      要存储八个同学的成绩

      Python21day学习---numpy基础操作----day18

      用 ndarray 进行存储:

      import numpy as np
      score=np.array([[80, 89, 86, 67, 79] ,
      
      [78, 97, 89, 67, 81],
      
      [90, 94, 78, 67, 74] ,
      
      [91, 91, 90, 67, 69] ,
      
      [76, 87, 75, 67, 86],
      
      [70, 79, 84, 67, 84] ,
      
      [94, 92, 93, 67, 64],
      
      [86, 85, 83, 67, 80]])
      print(type(score),score)
      

      返回结果:

      <class 'numpy.ndarray'> [[80 89 86 67 79]
       [78 97 89 67 81]
       [90 94 78 67 74]
       [91 91 90 67 69]
       [76 87 75 67 86]
       [70 79 84 67 84]
       [94 92 93 67 64]
       [86 85 83 67 80]]

       

      三、Ndarray 与 Python 原生 list 运算效率对比

      在这里我们通过一段代码运行来体会到 ndarray 的好处

      import random
      import time
      import numpy as np
      a = []
      for i in range(100000000):
          a.append(random.random())
          
      %time sum1=sum(a)
      
      b=np.array(a)
       
      %time sum2=np.sum(b)
      

      输出结果为:

      CPU times: user 1.82 s, sys: 17.8 s, total: 19.6 s
      Wall time: 57.9 s
      CPU times: user 189 ms, sys: 606 ms, total: 794 ms
      Wall time: 2.04 s

       

      从中我们看到 ndarray 的计算速度要快很多,节约了时间(57.9s降低到了2.04s)。

      机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在 python 也在机器学习领域达不到好的效果。

      Python21day学习---numpy基础操作----day18

      Numpy 专门针对 ndarray 的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于 Python 中的嵌套列表,数组越大,Numpy 的优势就越明显。

       

      四、Ndarray 的优势

      1.储存风格

      Python21day学习---numpy基础操作----day18

       

      从图中我们可以看出 ndarray 在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。

      这是因为 ndarray 中的所有元素的类型都是相同的,而 Python 列表中的元素类型是任意的,所以 ndarray 在存储元素时内存可以连续,而 python 原生 list 只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面 Numpy 的 ndarray 不及 Python 原生list,但在科学计算中, Numpy 的 ndarray 就可以省掉很多循环语句,代码使用方面比 Python 原生 list 简单的多。

      2.并行化运算

      ndarray 支持并行化运算(向量化运算)

      3.底层语言

      Numpy 底层使用 C 语言编写,内部解除了 GIL(全局解释器锁),其对数组的操作速度不受 Python 解释器的限制,效率远高于纯 Python 代码。

      五,numpy的属性和类型

      ndarray 的属性

      数组属性反映了数组本身固有的信息。

      ndarray.shape 数组维度的元组

      ndarray.ndim 数组维数

      ndarray.size 数组中的元素数量

      ndarray.itemsize 一个数组元素的长度(字节)

      ndarray.dtype 数组元素的类型

      a=np.array([[1, 2, 3],[4, 5, 6]],dtype=np.float32)
      b=np.array([1,2,3,4])
      c=np.array([[[1,2,3],[4,5,6,]],[[1,2,3],[4,5,6]]])
      print(a.shape)
      print(b.shape)
      print(c.shape)

      结果如下:

      (2, 3)
      (4,)
      (2, 2, 3)

       

      那么,现在的a,b,c数组分别是几维数组呢?有多少个中括号就是几维的数组哦,因此,a是二维数组,b是一维数组,c是三维数组。


       

              数组类型以及范围
      np.bool 用一个字节存储的布尔类型(True 或 False) ‘b'

      np.int8  
       一个字节大小,-128至127 'i'
      np.int16  整数,-32768至32767 i2'
      np.int32 整数,-231至232-1   ‘i4'
      np.int64  整数,-263至263-1 i8’
       
      np.uint8  无符号整数,0至255    'u'
      np.uint16 无符号整数,0至65535 'u2'
      np.uint32 无符号整数,0至2**32-1 'u4'
      np.uint64  无符号整数,0至2**64-1 'u8'
      np.float16 半精度浮点数:16位,正负号1位,指数5位,精度10位 ‘f2’
      np.float32 单精度浮点数:32位,正负号1位,指数8位,精度23位  ‘f4’
      np.float64  双精度浮点数:64位,正负号1位,指数11位,精度52位  ‘f8’
      np.complex128

      复数,分别用两个64位浮点数

      表示实部和虚部

      'c16'
      np.object_  python 对象  ‘O’ 
      np.string_   字符串 ’S’
      np.unicode_  unicode 类型 ’U’

      建立一个数组,名称为d,指定类型为int16:

      d=np.array([1,2,3,32767],dtype=np.int16)
      print(d.dtype)
      print(d)

       也可以这样指定类型:

      d=np.array([1,2,3,32800],dtype="i2")
      print(d.dtype)
      print(d)

      但32800已经超过int16的范围了,因此,结果是错误的哦,结果如下:

      int16
      [     1      2      3 -32736]

      修改i2为i8就可以正常显示啦。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://zskjohn.blog.csdn.net/article/details/126399533,作者:zsk_john,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:软考中级(软件设计)----存储系统、总线及系统可靠性

      下一篇:java程序调用hive查询的一个异常

      相关文章

      2025-05-14 10:33:16

      30天拿下Python之使用Json

      Json的英文全称为JavaScript Object Notation,中文为JavaScript对象表示法,是一种存储和交换文本信息的语法,类似XML。Json作为轻量级的文本数据交换格式,比XML更小、更快,更易解析,也更易于阅读和编写。

      2025-05-14 10:33:16
      json , Json , Python , 字符串 , 对象 , 序列化 , 转换
      2025-05-14 10:33:16

      30天拿下Python之文件操作

      Python是一种高级编程语言,它提供了许多内置函数和模块来处理文件操作,主要包括:打开文件、读取文件、写入文件、关闭文件、获取目录列表等。

      2025-05-14 10:33:16
      Python , 使用 , 函数 , 文件 , 权限 , 目录
      2025-05-14 10:07:38

      30天拿下Python之迭代器和生成器

      在Python中,迭代器是一个非常重要的概念,它使得我们能够遍历一个序列而无需使用索引。迭代器不仅限于列表、元组、字符串等,我们也可以创建自定义的迭代器对象。

      2025-05-14 10:07:38
      Python , 使用 , 函数 , 生成器 , 返回 , 迭代 , 遍历
      2025-05-14 10:03:05

      30天拿下Python之模块和包

      Python的模块(Module)和包(Package)是Python的两个主要概念,它们都是用来组织和封装代码的机制。

      2025-05-14 10:03:05
      Python , 代码 , 函数 , 导入 , 文件 , 模块
      2025-05-14 10:03:05

      30天拿下Python之异常处理

      异常是指程序在运行过程中出现的不正常情况,如文件找不到、除数为零等。异常处理就是要让程序在遇到这些问题时,能够进行合理的处理,避免因错误而导致的程序崩溃和无法预测的行为。

      2025-05-14 10:03:05
      Python , try , 代码 , 处理 , 异常 , 类型
      2025-05-14 09:51:15

      python中怎样指定open编码为ansi

      在Python中,当使用open函数打开文件时,可以通过encoding参数来指定文件的编码方式。然而,需要注意的是,Python标准库中的编码并不直接支持名为"ANSI"的编码,因为"ANSI"在不同的系统和地区可能代表不同的编码(如Windows平台上的GBK、GB2312、Big5等)。

      2025-05-14 09:51:15
      encoding , Python , 指定 , 文件 , 编码
      2025-05-14 09:51:15

      Python 引用不确定的函数

      在Python中,引用不确定的函数通常意味着我们可能在运行时才知道要调用哪个函数,或者我们可能想根据某些条件动态地选择不同的函数来执行。这种灵活性在处理多种不同逻辑或根据不同输入参数执行不同操作的场景中非常有用。

      2025-05-14 09:51:15
      Python , 函数 , 字典 , 映射 , 示例 , 调用 , 输入
      2025-05-14 09:51:15

      python json反序列化为对象

      在Python中,将JSON数据反序列化为对象通常意味着将JSON格式的字符串转换为一个Python的数据结构(如列表、字典)或者一个自定义的类实例。

      2025-05-14 09:51:15
      json , JSON , Person , Python , 列表 , 字典 , 实例
      2025-05-13 09:53:23

      一个python 程序执行顺序

      一个python 程序执行顺序

      2025-05-13 09:53:23
      Python , 代码 , 函数 , 循环 , 执行 , 语句
      2025-05-07 09:09:52

      Python 在金融科技领域的应用

      金融科技(FinTech)作为一种结合了技术和金融服务的新兴行业,正在深刻改变传统金融业的运作方式。金融科技通过利用新技术(如区块链、大数据、人工智能等)提高金融服务的效率、透明度和用户体验,而 Python 作为一门高效且功能强大的编程语言,已经成为金融科技领域的核心工具之一。

      2025-05-07 09:09:52
      Python , 分析 , 数据
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5253714

      查看更多

      最新文章

      30天拿下Python之使用Json

      2025-05-14 10:33:16

      30天拿下Python之文件操作

      2025-05-14 10:33:16

      30天拿下Python之迭代器和生成器

      2025-05-14 10:07:38

      30天拿下Python之模块和包

      2025-05-14 10:03:05

      30天拿下Python之异常处理

      2025-05-14 10:03:05

      python中怎样指定open编码为ansi

      2025-05-14 09:51:15

      查看更多

      热门文章

      Python标准输入输出

      2023-04-18 14:15:05

      Python:matplotlib分组Bar柱状图

      2024-09-25 10:15:01

      刷题——Python篇(2)类型转换

      2023-02-13 07:58:38

      Python Pandas将多个dataframe写入Excel文件

      2023-04-21 03:11:35

      Python冒泡排序

      2023-04-18 14:14:43

      AI:深度学习中的激活函数sigmoid函数,Python

      2024-09-25 10:15:01

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      开发快手爬票项目(上)

      Python批量自动修改大量文件的名称

      基于Python测试数据质量的过程及库

      Python爬虫基础——06-文件的读写

      使用Python的Turtle模块绘制表白爱心

      Python编程实战营:四款实用小项目助你快速入门,从零开始打造你的个人项目集!

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号