爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      分布式系统常见的事务处理机制

      首页 知识中心 云计算 文章详情页

      分布式系统常见的事务处理机制

      2023-05-23 01:22:38 阅读次数:455

      事务,分布式

      为保障系统的可用性、可靠性以及性能,在分布式系统中,往往会设置数据冗余,即对数据进行复制。举例来说,当一个数据库的副本被破环以后,那么系统只需要转换到其他数据副本就能继续运行下去。另外一个例子,当访问单一服务器管理的数据的进程数不断增加时,系统就需要对服务器的数量进行扩充,此时,对服务器进行复制,随后让它们分担工作负荷,就可以提高性能。但同时,如何保障多个数据节点之间数据的一致以及如何处理分布式事务,将成为为一个复杂的话题。本文将介绍常用的事务处理机制。

      CAP 定理

      CAP 定理(也称为 Brewer 定理),是由计算机科学家 Eric Brewer 提出的,即在分布式计算机系统不可能同时提供以下全部三个保证:

      • 一致性(Consistency):所有节点同一时间看到是相同的数据;
      • 可用性(Availability):不管是否成功,确保每一个请求都能接收到响应;
      • 分区容错性(Partition tolerance):系统任意分区后,在网络故障时,仍能操作

      显然,为了保障性能和可靠性,我们将数据复制多份,分布到多个节点上,同时也带来了一个难点,那就是如何保持各个副本数据的一致性。换句话说,我们选择了 AP ,则必须要牺牲掉 C 了。

      但是,在实际的应用场景中,数据的一致性往往也是需要保证的。那么这是否违背了 CAP 定理呢?

      一致性模型

      其实,数据的一致性也分几种情况,大致可以分为:

      • Weak 弱一致性:当你写入一个新值后,读操作在数据副本上可能读出来,也可能读不出来。比如:某些存储系统,搜索引擎,实时游戏,语音聊天等,这些数据本文对完整性要求不高,数据是否一致关系也不大。
      • Eventually 最终一致性:当你写入一个新值后,并不一定能马上读出来,但在某个时间窗口之后保证最终能读出来。比如:DNS,电子邮件,消息中间件等系统,大部分分布式系统技术都采用这类模式。
      • Strong 强一致性:新的数据一旦写入,在任意副本任意时刻都能读到新值。比如:文件系统,RDBMS都是强一致性的。

      也就是说,在设计分布式系统时,我们并不一定要求是强一致性的,根据应用场景可以选择弱一致性或者是最终一致性。

      事务的作用

      事务有如下作用:

      • 保证执行结果的正确性
      • 保证数据的一致性
      • ACID

      常见的事务处理机制

      Master-Slave 复制

      Slave 一般是 Master 的备份。在这样的系统中,一般是如下设计的:

      • 读写请求都由 Master 负责。
      • 写请求写到 Master 上后,由 Master 同步到 Slave 上。

      这种机制的特点是:

      • 数据同步通常是异步的
      • 有良好的吞吐量,低延迟
        * 在大多数 RDBMS 中支持,比如 MySQL二进制日志
      • 弱/最终一致性

      这种机制的缺点是,如果 Master 挂了,Slave 只能提供读服务,而没有写服务。

      Master-Master 多主复制

      指一个系统存在两个或多个Master,每个Master都提供读写服务。这个机制是Master-Slave的加强版,数据间同步一般是通过Master间的异步完成,所以是最终一致性。 Master-Master的好处是,一台Master挂了,别的Master可以正常做读写服务,他和Master-Slave一样,当数据没有被复制到别的Master上时,数据会丢失。很多数据库都支持Master-Master的Replication的机制。

      这种机制的特点是:

      • 异步
      • 最终的一致性
      • 多个节点间需要序列化协议

      两阶段提交

      两阶段提交协议 (Two-phase commit protocol,2PC)的过程涉及到协调者和参与者。协调者可以看做成事务的发起者,同时也是事务的一个参与者。对于一个分布式事务来说,一个事务是涉及到多个参与者的。具体的两阶段提交的过程如下:

      第一阶段(准备阶段)

      • 协调者节点向所有参与者节点询问是否可以执行提交操作(vote),并开始等待各参与者节点的响应。
      • 参与者节点执行询问发起为止的所有事务操作,并将 Undo 信息和 Redo 信息写入日志。(注意:若成功这里其实每个参与者已经执行了事务操作)
      • 各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个“同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个“中止”消息。

      第二阶段(提交阶段)

      如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源)

      • 当协调者节点从所有参与者节点获得的相应消息都为“同意”时:
      • 协调者节点向所有参与者节点发出“正式提交(commit)”的请求。
      • 参与者节点正式完成操作,并释放在整个事务期间内占用的资源。
      • 参与者节点向协调者节点发送“完成”消息。
      • 如果任一参与者节点在第一阶段返回的响应消息为”中止”,或者 协调者节点在第一阶段的询问超时之前无法获取所有参与者节点的响应消息时:
      • 协调者节点向所有参与者节点发出”回滚操作(rollback)”的请求。
      • 参与者节点利用之前写入的Undo信息执行回滚,并释放在整个事务期间内占用的资源。
      • 参与者节点向协调者节点发送”回滚完成”消息。
      • 协调者节点受到所有参与者节点反馈的”回滚完成”消息后,取消事务。
      • 协调者节点受到所有参与者节点反馈的”完成”消息后,完成事务

      不管最后结果如何,第二阶段都会结束当前事务。

      二段式提交协议的优缺点:

      优点:原理简单,实现方便;

      缺点:

      • 同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。
      • 单点故障。由于协调者的重要性,一旦协调者发生故障,参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。
      • 数据不一致。在阶段二中,当协调者向参与者发送 commit 请求之后,发生了局部网络异常或者在发送 commit 请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了 commit 请求。而在这部分参与者接到 commit 请求之后就会执行 commit 操作。但是其他部分未接到 commit 请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。
      • 二阶段无法解决的问题:协调者再发出 commit 消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。

      为了解决两阶段提交协议的种种问题,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。

      三阶段提交

      三阶段提交协议(Three-phase commit protocol,3PC),是二阶段提交(2PC)的改进版本。与两阶段提交不同的是,三阶段提交有两个改动点:

      • 引入超时机制。同时在协调者和参与者中都引入超时机制。
      • 在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。

      即 3PC 把 2PC 的准备阶段再次一分为二,这样三阶段提交就有 CanCommit、PreCommit、DoCommit 三个阶段。

      CanCommit 阶段

      CanCommit 阶段其实和 2PC 的准备阶段很像。协调者向参与者发送 commit 请求,参与者如果可以提交就返回 Yes 响应,否则返回 No 响应。

      • 事务询问:协调者向参与者发送 CanCommit 请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。
      • 响应反馈:参与者接到 CanCommit 请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回 Yes 响应,并进入预备状态。否则反馈 No

      PreCommit 阶段

      协调者根据参与者的反应情况来决定是否可以记性事务的 PreCommit 操作。根据响应情况,有以下两种可能。

      • 假如协调者从所有的参与者获得的反馈都是 Yes 响应,那么就会执行事务的预执行。
      • 发送预提交请求:协调者向参与者发送 PreCommit 请求,并进入Prepared 阶段。
      • 事务预提交:参与者接收到 PreCommit 请求后,会执行事务操作,并将undo 和 redo 信息记录到事务日志中。
      • 响应反馈:如果参与者成功的执行了事务操作,则返回 ACK 响应,同时开始等待最终指令。
      • 假如有任何一个参与者向协调者发送了 No 响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。
      • 发送中断请求:协调者向所有参与者发送 abort 请求。
      • 中断事务:参与者收到来自协调者的 abort 请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

      doCommit 阶段

      该阶段进行真正的事务提交,也可以分为以下两种情况。

      • 执行提交
      • 发送提交请求:协调接收到参与者发送的 ACK 响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送 doCommit 请求。
      • 事务提交:参与者接收到 doCommit 请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
      • 响应反馈:事务提交完之后,向协调者发送 ACK 响应。
      • 完成事务:协调者接收到所有参与者的 ACK 响应之后,完成事务。
      • 中断事务:协调者没有接收到参与者发送的 ACK 响应(可能是接受者发送的不是 ACK 响应,也可能响应超时),那么就会执行中断事务。
      • 发送中断请求:协调者向所有参与者发送 abort 请求
      • 事务回滚:参与者接收到 abort 请求之后,利用其在阶段二记录的undo 信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
      • 反馈结果:参与者完成事务回滚之后,向协调者发送 ACK 消息
      • 中断事务:协调者接收到参与者反馈的 ACK 消息之后,执行事务的中断。

      在 doCommit 阶段,如果参与者无法及时接收到来自协调者的 doCommit 或者 rebort 请求时,会在等待超时之后,会继续进行事务的提交。即当进入第三阶段时,由于网络超时等原因,虽然参与者没有收 到 commit 或者 abort 响应,事务仍然会提交。

      三阶段提交不会一直持有事务资源并处于阻塞状态。但是这种机制也会导致数据一致性问题,因为,由于网络原因,协调者发送的 abort 响应没有及时被参与者接收到,那么参与者在等待超时之后执行了 commit 操作,这样就和其他接到 abort 命令并执行回滚的参与者之间存在数据不一致的情况。

      Paxos 算法

      Paxos 算法是 Leslie Lamport 于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。Paxos 算法目前在 Google 的 Chubby、MegaStore、Spanner 等系统中得到了应用,Hadoop 中的 ZooKeeper 也使用了 Paxos 算法。

      在 Paxos 算法中,分为4种角色:

      • Proposer :提议者
      • Acceptor:决策者
      • Client:产生议题者
      • Learner:最终决策学习者

      算法可以分为两个阶段来执行:

      阶段1

      • Proposer 选择一个议案编号 n,向 acceptor 的多数派发送编号也为 n 的 prepare 请求。
      • Acceptor:如果接收到的 prepare 请求的编号 n 大于它已经回应的任何prepare 请求,它就回应已经批准的编号最高的议案(如果有的话),并承诺不再回应任何编号小于 n 的议案;

      阶段2

      • Proposer:如果收到了多数 acceptor 对 prepare 请求(编号为 n)的回应,它就向这些 acceptor 发送议案{n, v}的 accept 请求,其中 v 是所有回应中编号最高的议案的决议,或者是 proposer 选择的值,如果回应说还没有议案。
      • Acceptor:如果收到了议案{n, v}的 accept 请求,它就批准该议案,除非它已经回应了一个编号大于 n 的议案。
      • Proposer 可以提出多个议案,只要它遵循上面的算法。它可以在任何时刻放弃一个议案。(这不会破坏正确性,即使在议案被放弃后,议案的请求或者回应消息才到达目标)如果其它的 proposer 已经开始提出更高编号的议案,那么最好能放弃当前的议案。因此,如果 acceptor 忽略一个 prepare 或者 accept 请求(因为已经收到了更高编号的 prepare 请求),它应该告知 proposer 放弃议案。这是一个性能优化,而不影响正确性。
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_9427273/6008275,作者:waylau,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:k8s1.18.18 的高可用部署

      下一篇:工作中常见的Redis部署模式

      相关文章

      2025-05-14 10:02:48

      SQL Server 事务日志体系结构1--基本术语

      事务包括对数据库的一次更改或一系列更改。它有一个明确开始和明确结束。开始时使用BEGIN TRANSACTION语句,或者SQL Server会自动为您开始一个事务。

      2025-05-14 10:02:48
      Server , SQL , 事务 , 数据库 , 日志 , 磁盘
      2025-05-13 09:49:12

      JDBC事务管理、四大特征(ACID)、事务提交与回滚、MySQL事务管理

      JDBC(Java Database Connectivity)事务是指一系列作为单个逻辑工作单元执行的数据库操作,这些操作要么全部成功——>提交,要么全部失败——>回滚,从而确保数据的一致性和完整性。

      2025-05-13 09:49:12
      MySQL , 事务 , 执行 , 提交 , 操作 , 数据库
      2025-05-07 09:08:54

      springboot系列教程(十二):基于转账案例,演示事务管理操作

      springboot系列教程(十二):基于转账案例,演示事务管理操作

      2025-05-07 09:08:54
      spring , 事务 , 接口 , 管理器 , 配置
      2025-05-06 09:19:12

      Spring多线程事务 能否保证事务的一致性(同时提交、同时回滚)?

      Spring的事务信息是存在ThreadLocal中的Connection, 所以一个线程永远只能有一个事务

      2025-05-06 09:19:12
      Spring , 事务 , 多线程 , 线程
      2025-05-06 09:18:49

      【Linux 从基础到进阶】Ceph分布式存储系统搭建

      随着数据量的爆炸式增长,传统的存储解决方案逐渐暴露出扩展性差、成本高、管理复杂等问题。Ceph是一种高性能、可扩展的开源分布式存储系统,能够为对象存储、块存储和文件系统提供统一的存储平台。

      2025-05-06 09:18:49
      分布式 , 存储 , 高可用性
      2025-04-22 09:28:19

      61. Spring事务传播行为实现原理

      61. Spring事务传播行为实现原理

      2025-04-22 09:28:19
      Spring , ThreadLocal , 事务
      2025-04-22 09:27:37

      【Redis】浅析 Redis 事务

      【Redis】浅析 Redis 事务

      2025-04-22 09:27:37
      redis , Redis , 事务 , 命令 , 执行
      2025-04-18 07:10:53

      LDAP基础理论

      分布式目录服务是一种用于存储和管理大量数据的系统,其中数据以层次结构的方式组织,并在多个服务器之间进行分布。它提供了一种集中式访问和管理数据的方法,使得用户可以通过网络连接到任何一个服务器来查询、添加、修改或删除存储在该目录中的信息。

      2025-04-18 07:10:53
      LDAP , 分布式 , 属性 , 服务器 , 用户 , 目录
      2025-04-15 09:24:56

      探秘Redis分布式锁:实战与注意事项

      Redis的Watch命令可以实现乐观锁,这是一种保护数据完整性的机制。在分布式环境中,当多个客户端并发地操作相同的键时,乐观锁有助于防止数据竞争和冲突。

      2025-04-15 09:24:56
      Redis , Redisson , 分布式 , 实例 , 客户端 , 获取
      2025-04-15 09:19:55

      分布式事务大揭秘:使用MQ实现最终一致性

      在单体应用中,事务的管理相对简单,可以通过数据库的事务机制来保证数据的一致性和完整性。然而,在分布式系统中,由于涉及到多个不同的服务和数据源,保证事务的一致性就变得复杂了。

      2025-04-15 09:19:55
      RocketMQ , 一致性 , 事务 , 分布式 , 发送 , 消息 , 系统
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5226889

      查看更多

      最新文章

      【Linux 从基础到进阶】Ceph分布式存储系统搭建

      2025-05-06 09:18:49

      LDAP基础理论

      2025-04-18 07:10:53

      分布式事务大揭秘:使用MQ实现最终一致性

      2025-04-15 09:19:55

      分布式存储技术

      2025-03-28 07:42:50

      【分布式理论13】分布式存储:数据存储难题与解决之道

      2025-03-12 09:33:43

      【分布式理论12】事务协调者高可用:分布式选举算法

      2025-03-11 09:36:54

      查看更多

      热门文章

      Android移动设备远程接入ZooKeeper分布式集群

      2023-04-18 14:14:56

      分布式版本控制系统——git

      2023-06-13 08:29:57

      python学习——分布式进程

      2023-05-08 10:00:50

      Elasticsearch分布式架构原理(二)

      2023-06-01 06:30:49

      分布式-技术专区-Redis分布式锁原理实现

      2023-05-29 10:45:37

      Kafka生产者同步或者异步发送消息(保证数据不丢失)

      2023-06-16 06:04:51

      查看更多

      热门标签

      系统 测试 用户 分布式 Java java 计算机 docker 代码 数据 服务器 数据库 源码 管理 python
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      RabbitMQ.Client.Exceptions.BrokerUnreachableException:“None of the specified endpoints were reachabl

      使用Java构建高效的分布式缓存系统

      RabbitMQ - 单机部署(超详细)

      04分布式电商项目 - Dubbox 简介

      雪花算法对System.currentTimeMillis()优化真的有用么?

      JavaWeb之分布式事务规范

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号