爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      如何在 GPU 上加速数据科学

      首页 知识中心 大数据 文章详情页

      如何在 GPU 上加速数据科学

      2024-09-25 10:15:01 阅读次数:115

      GPU

      数据科学家需要算力。无论您是用 pandas 处理一个大数据集,还是用 Numpy 在一个大矩阵上运行一些计算,您都需要一台强大的机器,以便在合理的时间内完成这项工作。

      在过去的几年中,数据科学家常用的 Python 库已经非常擅长利用 CPU 能力。

      Pandas 的基础代码是用 C 语言编写的,它可以很好地处理大小超过 100GB 的数据集。如果您没有足够的 RAM 来容纳这样的数据集,那么您可以使用分块功能,它很方便,可以一次处理一个数据块。

      GPUs vs CPUs:并行处理

      有了大量的数据,CPU 就不会切断它了。

      一个超过 100GB 的数据集将有许多数据点,数据点的数值在数百万甚至数十亿的范围内。有了这么多的数据点要处理,不管你的 CPU 有多快,它都没有足够的内核来进行有效的并行处理。如果你的 CPU 有 20 个内核(这将是相当昂贵的 CPU),你一次只能处理 20 个数据点!

      CPU 在时钟频率更重要的任务中会更好——或者根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。

      如何在 GPU 上加速数据科学

      多核系统如何更快地处理数据。对于单核系统(左),所有 10 个任务都转到一个节点。对于双核系统(右),每个节点承担 5 个任务,从而使处理速度加倍

      深度学习已经在利用 GPU 方面发挥了相当大的作用。许多在深度学习中完成的卷积操作是重复的,因此在 GPU 上可以大大加速,甚至可以达到 100 次。

      今天的数据科学没有什么不同,因为许多重复的操作都是在大数据集上执行的,库中有 pandas、Numpy 和 scikit-learn。这些操作也不太复杂,无法在 GPU 上实现。

      最后,还有一个解决方案。

      用 Rapids 加速 GPU

      Rapids 是一套软件库,旨在利用 GPU 加速数据科学。它使用低级别的 CUDA 代码实现快速的、GPU 优化的算法,同时它上面还有一个易于使用的 Python 层。

      Rapids 的美妙之处在于它与数据科学库的集成非常顺利,比如 pandas 数据帧就很容易通过 Rapids 实现 GPU 加速。下图说明了 Rapids 如何在保持顶层易用性的同时实现低层的加速。

      如何在 GPU 上加速数据科学

      Rapids 利用了几个 Python 库:

      • cuDF-Python GPU 数据帧。它几乎可以做 pandas 在数据处理和操作方面所能做的一切。

      • cuML-cuGraph 机器学习库。它包含了 Scikit-Learn 拥有的许多 ML 算法,所有算法的格式都非常相似。

      • cuGraph-cuGraph 图处理库。它包含许多常见的图分析算法,包括 PageRank 和各种相似性度量。

      如何使用 Rapids

      安装

      现在你将看到如何使用 Rapids!

      要安装它,请访问这个网站,在这里你将看到如何安装 Rapids。你可以通过 Conda 将其直接安装到你的机器上,或者简单地使用 Docker 容器。

      安装时,可以设置系统规范,如 CUDA 版本和要安装的库。例如,我有 CUDA 10.0,想要安装所有库,所以我的安装命令是:

      conda install -c nvidia -c rapidsai -c numba -c conda-forge -c pytorch -c defaults cudf=0.8 cuml=0.8 cugraph=0.8 python=3.6 cudatoolkit=10.0

      一旦命令完成运行,就可以开始用 GPU 加速数据科学了。

      设置我们的数据

      对于本教程,我们将介绍 DBSCAN demo 的修改版本。我将使用 Nvidia 数据科学工作站和 2 个 GPU 运行这个测试。

      DBSCAN 是一种基于密度的聚类算法,可以自动对数据进行分类,而无需用户指定有多少组数据。在 Scikit-Learn 中有它的实现。

      我们将从获取所有导入设置开始。先导入用于加载数据、可视化数据和应用 ML 模型的库。

      import os

      import matplotlib.pyplot as plt

      from matplotlib.colors import ListedColormap

      from sklearn.datasets import make_circles

      make_circles 函数将自动创建一个复杂的数据分布,类似于我们将应用于 DBSCAN 的两个圆。

      让我们从创建 100000 点的数据集开始,并在图中可视化:

      X, y = make_circles(n_samples=int(1e5), factor=.35, noise=.05)

      X[:, 0] = 3*X[:, 0]

      X[:, 1] = 3*X[:, 1]

      plt.scatter(X[:, 0], X[:, 1])

      plt.show()

      如何在 GPU 上加速数据科学

      CPU 上的 DBSCAN

      使用 Scikit-Learn 在 CPU 上运行 DBSCAN 很容易。我们将导入我们的算法并设置一些参数。

      from sklearn.cluster import DBSCAN

      db = DBSCAN(eps=0.6, min_samples=2)

      我们现在可以通过调用 Scikit-Learn 中的一个函数对循环数据使用 DBSCAN。在函数前面加上一个「%」,就可以让 Jupyter Notebook 测量它的运行时间。

      %%time

      y_db = db.fit_predict(X)

      这 10 万个点的运行时间是 8.31 秒,如下图所示:

      如何在 GPU 上加速数据科学

      使用 Scikit-Learn 在 CPU 上运行 DBSCAN 的结果

      GPU 上带 Rapids 的 DBSCAN

      现在,让我们用 Rapids 进行加速!

      首先,我们将把数据转换为 pandas.DataFrame 并使用它创建一个 cudf.DataFrame。pandas.DataFrame 无缝转换成 cudf.DataFrame,数据格式无任何更改。

      import pandas as pd

      import cudf

       

      X_df = pd.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})

      X_gpu = cudf.DataFrame.from_pandas(X_df)

      然后我们将从 cuML 导入并初始化一个特殊版本的 DBSCAN,它是 GPU 加速的版本。DBSCAN 的 cuML 版本的函数格式与 Scikit-Learn 的函数格式完全相同:相同的参数、相同的样式、相同的函数。

      from cuml import DBSCAN as cumlDBSCAN

       

      db_gpu = cumlDBSCAN(eps=0.6, min_samples=2)

      最后,我们可以在测量运行时间的同时运行 GPU DBSCAN 的预测函数。

      %%time

      y_db_gpu = db_gpu.fit_predict(X_gpu)

      GPU 版本的运行时间为 4.22 秒,几乎加速了 2 倍。由于我们使用的是相同的算法,因此结果图也与 CPU 版本完全相同。

      如何在 GPU 上加速数据科学

      使用 cuML 在 GPU 上运行 DBSCAN 的结果

      使用 Rapids GPU 获得超高速

      我们从 Rapids 获得的加速量取决于我们正在处理的数据量。一个好的经验法则是,较大的数据集将更加受益于 GPU 加速。在 CPU 和 GPU 之间传输数据有一些开销时间——对于较大的数据集,开销时间变得更「值得」。

      我们可以用一个简单的例子来说明这一点。

      我们将创建一个随机数的 Numpy 数组并对其应用 DBSCAN。我们将比较常规 CPU DBSCAN 和 cuML 的 GPU 版本的速度,同时增加和减少数据点的数量,以了解它如何影响我们的运行时间。

      下面的代码说明如何进行测试:

      import numpy as np

       

      n_rows, n_cols = 10000, 100

      X = np.random.rand(n_rows, n_cols)

      print(X.shape)

       

      X_df = pd.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})

      X_gpu = cudf.DataFrame.from_pandas(X_df)

       

      db = DBSCAN(eps=3, min_samples=2)

      db_gpu = cumlDBSCAN(eps=3, min_samples=2)

       

      %%time

      y_db = db.fit_predict(X)

       

      %%time

      y_db_gpu = db_gpu.fit_predict(X_gpu)

      检查下面的 Matplotlib 结果图:

      如何在 GPU 上加速数据科学

      当使用 GPU 而不是 CPU 时,数量会急剧增加。即使在 10000 点(最左边),我们的速度仍然是 4.54x。在更高的一端,1 千万点,我们切换到 GPU 时的速度是 88.04x!

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/teayear/3188562,作者:跟张哥学编程,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:用c++编写寻找最大数

      下一篇:初学Android,使用Bundle在Activity间交换数据(九)

      相关文章

      2025-04-18 08:02:09

      CUDA从入门到精通(二)——NVCC编译器介绍

      nvcc(NVIDIA CUDA Compiler)是 NVIDIA CUDA 编程工具链中的编译器驱动程序。它负责将基于 CUDA C/C++ 编写的代码编译成能够在 NVIDIA GPU 上执行的程序。

      2025-04-18 08:02:09
      CPU , CUDA , GPU , 代码 , 编译
      2025-04-18 08:02:09

      CUDA从入门到精通(一)——基于CUDA的异构并行计算

      CUDA从入门到精通(一)——基于CUDA的异构并行计算

      2025-04-18 08:02:09
      CUDA , GPU , 任务 , 线程 , 编程 , 计算
      2025-04-18 08:02:09

      CUDA从入门到精通(三)——CUDA编程示例

      CUDA(Compute Unified Device Architecture)是由 NVIDIA 提供的一种并行计算平台和编程模型。它允许开发者利用 NVIDIA GPU 的并行计算能力,编写可以在 GPU 上高效运行的代码,从而加速计算密集型任务。

      2025-04-18 08:02:09
      CUDA , GPU , 内存 , 程序 , 线程 , 释放
      2025-03-11 09:35:06

      Android 性能优化-过度绘制的实际解决措施

      Android 性能优化-过度绘制的实际解决措施

      2025-03-11 09:35:06
      GPU , gt , 像素 , 绘制
      2025-02-13 08:34:32

      pytorch深度学习前查看显卡,用nvidia-smi和nvidia-smi查看 -q查看电脑和服务器里的GPU参数情况以及一些英文参数指的意思

      pytorch深度学习前查看显卡,用nvidia-smi和nvidia-smi查看 -q查看电脑和服务器里的GPU参数情况以及一些英文参数指的意思

      2025-02-13 08:34:32
      GPU , 性能
      2024-11-21 09:55:25

      第一个GPU训练程序

      第一个GPU训练程序

      2024-11-21 09:55:25
      GPU , 程序运行 , 训练
      2024-11-06 07:16:52

      numpy加速包——Cupy

      numpy加速包——Cupy

      2024-11-06 07:16:52
      GPU , numpy , 数组
      2024-09-25 10:14:34

      k8s调用GPU

      k8s调用GPU

      2024-09-25 10:14:34
      GPU , k8s
      2024-04-25 09:39:52

      搭建(人工智能)或(视觉处理)环境前必看

      在进行做人工智能或视图处理的一些ai环境搭建的时候,我们经常要下Anaconda要下cuda要下pytorch一大堆的东西,那么这些东西的作用和他们之间的关系是什么呢!

      2024-04-25 09:39:52
      CUDA , GPU
      2023-05-31 08:45:09

      GPU及GPU通用计算编程模型简介

      NVIDIA公司在1999年发布GeForce256时首先提出GPU(图形处理器)的概念,随后大量复杂的应用需求促使整个产业蓬勃发展至今。

      2023-05-31 08:45:09
      CUDA , GPU
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5238198

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号