爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      几种常见的排序算法

      首页 知识中心 大数据 文章详情页

      几种常见的排序算法

      2024-06-20 09:09:27 阅读次数:43

      排序算法

      排序

      排序的概念

      排序:所谓排序就是使一串记录,按照其中的某个或者某些关键字的大小,递增或递减排列起来的操作。

      稳定性:假定在待排序的记录序列中,存在多个具有相同关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的,否则称为不稳定的。

      内部排序:数据元素全部放在内存汇中的排序。

      外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能再内外存之间移动数据的排序。

      常见的排序算法

      • 插入排序
      • 直接插入排序
      • 希尔排序
      • 选择排序
      • 选择排序
      • 堆排序
      • 交换排序
      • 冒泡排序
      • 快速排序
      • 归并排序
      • 归并排序

      没有一个排序能解决所有问题,它们各有特点。


      插入排序

      基本思想

      直接插入排序是一种简单的插入排序法,其思想是:把待排序的记录按照其关键码值的大小逐个插入到一个已经排好的有序序列中,直到所有的记录插入完为止,得到一个新的序列。

      例如:玩扑克牌,理牌的过程。先把你的牌放到一堆,你先不要动,发完之后直接将你所有的牌拿起来,进行理牌。

      时间复杂度是O(n²)。

      最坏情况——逆序(6,5,4,3,2,1)就是一直都要放到第一个位置,完成升序。

      最好情况——顺序(1,2,3,4,5,6)没有一个数据需要挪动。

      直接插入排序

      把第一个数当做一个有序区间,把第二个数当做要插入的数进行比较大小,重新排序,然后把前两个数当做一个有序区间…依次类推。

      代码实现
      void InsertSort(int* a, int n)//升序实现(降序同理)
      {
      for (int i = 0; i < n - 1; i++)
      {
      int end = i;
      int temp = a[end + 1];//将要插入的数赋值给temp,因为跟前面的数进行比较的,end位置的数要移动到end+1上
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + 1] = a[end];
      end--;
      }
      else
      {
      break;//完成两种情况,1在中间找到了位置插入,2比所有的元素都小,插入到第一位。
      }
      }
      a[end + 1] = temp;
      }
      }
      解释&图示
      /*解释:
      数组中[0,end]区间是有序的,要插入的数在end+1这个位置上,
      将end+1这个位置上的值插入到[0,end]中,最后完成排序的数组[0,end+1]这个新的区间也是有序的*/
      /* 1.定义一个end找到数组的结尾元素(就是从第一个元素开始定义结尾)
      2.定义一个end+1找到end的下一个位置
      3.从end+1这个位置依次往前(end--)进行比较,如果比前一个数小就将end位置上的这个数放到end+1上
      4.如果大于等于前面的这个数就放到前面的这个数的后面
      */

      几种常见的排序算法

      个人理解
      /*理解:
      就是将一个数组分成几组,依次进行排序,先取数组中第一个元素该元素下标为0,这时候end就是0,end+1就是他后面的元素,将end+1这个位置上的元素与end上的这个元素进行比较大小,完成第一次排序。
      接着end是1,end+1就是2,将数组下标为2的这个元素与前面两个是元素进行比较,完成第二次排序。
      如果end+1比end大就跳出当前while循环,a[end+1] = temp就相当于没动。
      ......依此类推。
      知道end=元素个数-1,end+1就是最后一个元素的下标
      */
      动画演示

      几种常见的排序算法

      代码测试
      #include<stdio.h>
      //直接插入排序
      void InsertSort(int* a, int n)
      {
      for (int i = 0; i < n - 1; i++)
      {
      int end = i;
      int temp = a[end + 1];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + 1] = a[end];
      end--;
      }
      else
      {
      break;
      }
      }
      a[end + 1] = temp;
      }
      }
      //打印输出
      void PrintArry(int* a,int n)
      {
      for (int i = 0; i < n; i++)
      {
      printf("%d ", a[i]);
      }
      }
      void TestInsertSort()
      {
      int a[] = { 5,4,2,6,1,3 };
      InsertSort(a, sizeof(a) / sizeof(int));
      PrintArry(a, sizeof(a) / sizeof(int));
      }
      int main(void)
      {
      TestInsertSort();
      return 0;
      }

      几种常见的排序算法

      希尔排序

      可以认为是在直接插入排序的优化。

      步骤:

      1. 先进行预排序,让数组接近有序(不用挪很多)。
      2. 直接插入排序。
      预排序

      分组排

      在直接插入排序中,最坏的情况就是逆序(6,5,4,3,2,1)了, 我们要挪动很多次。

      假设间隔gap为一组,假定gap为2.

      使得大的数更快的移到后面,小的数更快的移动到前面。

      进行多组间隔为gap的预排序,gap从大到小,越接近有序。

      gap越大,大的数越快到达后面,小的数越快到达前面。

      gap越大,预排完,越不接近有序。

      gap越小,预排完,越接近有序。

      间隔gap为1,就是直接插入排序。

      图示

      几种常见的排序算法

      预排序代码实现
      voidShellSort(int* a, int n)
      {
      int gap = 2;//gap=1时就是直接插入排序
      for (int i = 0; i < n - gap; i++)
      {
      int end = i;
      int temp = a[end + gap];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + gap] = a[end];
      end -= gap;
      }
      else
      {
      break;
      }
      }
      a[end + gap] = temp;
      }

      }

      几种常见的排序算法

      解释
      /*
      这个代码巧妙就巧妙在于,可以把间隔为gap的多组数据进行同时插入排序
      假定gap=2分为多组
      1.当i=0时,end = 0;end+1=2;
      2.i = 1时,end = 1;end +1 = 3;
      ......
      */
      动画演示

      几种常见的排序算法

      gap到底给多少

      gap给的大,大的数去后面快,小的数去前面也快。整体的增益明显。

      gap给固定的值是不对的,同一个gap,数据越多效果越差。

      所以gap给的值一般与n有关,前提:保证最后gap是1,>1的时候都是预排序,要保证最后一次gap为1进行直接插入排序

      代码实现
      void ShellSort(int* a, int n)
      {
      int gap = n;
      while (gap > 1)
      {
      gap = gap / 3 + 1;
      for (int i = 0; i < n - gap; i++)
      {
      int end = i;
      int temp = a[end + gap];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + gap] = a[end];
      end -= gap;
      }
      else
      {
      break;
      }
      }
      a[end + gap] = temp;
      }
      }
      }
      代码测试
      #include<stdio.h>
      void ShellSort(int* a, int n)
      {
      int gap = n;
      while (gap > 1)
      {
      gap = gap / 3 + 1;
      for (int i = 0; i < n - gap; i++)
      {
      int end = i;
      int temp = a[end + gap];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + gap] = a[end];
      end -= gap;
      }
      else
      {
      break;
      }
      }
      a[end + gap] = temp;
      }
      }
      }
      //打印输出
      void PrintArry(int* a,int n)
      {
      for (int i = 0; i < n; i++)
      {
      printf("%d ", a[i]);
      }
      }
      void TestInsertSort()
      {
      int a[] = { 6,5,4,3,2,1 };
      ShellSort(a, sizeof(a) / sizeof(int));
      PrintArry(a, sizeof(a) / sizeof(int));
      }
      int main(void)
      {
      TestInsertSort();
      return 0;
      }

      几种常见的排序算法

      速度对比

      那么希尔排序在执行速度方面到底比直接插入排序要快多少呢,我们编写一个代码来测试他的执行速度。

      注意

      在测试速度的时候可以将解决方案改为Release,Release的优化更多,执行速度会快一些。

      几种常见的排序算法

      代码实现
      #include<stdio.h>
      #include<stdlib.h>
      #include<time.h>
      //直接插入排序
      void InsertSort(int* a, int n)//升序实现(降序同理)
      {
      for (int i = 0; i < n - 1; i++)
      {
      int end = i;
      int temp = a[end + 1];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + 1] = a[end];
      end--;
      }
      else
      {
      break;
      }
      }
      a[end + 1] = temp;
      }
      }
      //希尔排序
      void ShellSort(int* a, int n)
      {
      int gap = n;
      while (gap > 1)
      {
      gap = gap / 3 + 1;
      for (int i = 0; i < n - gap; i++)
      {
      int end = i;
      int temp = a[end + gap];
      while (end >= 0)
      {
      if (temp < a[end])
      {
      a[end + gap] = a[end];
      end -= gap;
      }
      else
      {
      break;
      }
      }
      a[end + gap] = temp;
      }
      }
      }
      //测试排序性能
      void TestSortSpeed()
      {
      srand(time(0));
      //创建2个数据个数为100000万个的数组来测试两个排序所用的时间
      const int N = 100000;
      int* a1 = (int*)malloc(sizeof(int) * N);
      int* a2 = (int*)malloc(sizeof(int) * N);
      //给这几个数组附上随机值
      for (int i = 0; i < N; i++)
      {
      a1[i] = rand();
      a2[i] = a1[i];
      }
      //记录时间
      int begin1 = clock();
      InsertSort(a1, N);//直接插入排序
      int end1 = clock();


      int begin2 = clock();
      ShellSort(a2, N);//希尔排序
      int end2 = clock();

      //输出所用时间(单位:毫秒)
      printf("InsertSort:\t%d\n", end1 - begin1);
      printf("ShellSort:\t%d\n", end2 - begin2);
      //释放
      free(a1);
      free(a2);

      }
      int main(void)
      {
      TestSortSpeed();
      return 0;
      }

      结果:

      几种常见的排序算法

      很明显,希尔排序的效率快了不是一星半点。

      时间复杂度

      希尔排序——gap =2;log以2为底N的对数,gap =3;log以3为底N的对数

      解释:

      几种常见的排序算法

      当gap很大的时候,数据跳的就很快,差不多每个数据都会挪一次,挪了N次。下面的预排序时间复杂度是O(N)。

      几种常见的排序算法

      当gap很小的时候,进行的预排序就越接近有序,这时的时间复杂度也是O(N)。

      综上所述,希尔排序的时间复杂度是O(logN*N)或者O(log3 N *N)以3为底N的对数乘N。(3是gap,gap是可以改变的)

      (时间复杂度logN的底数在没有的定说明的情况下都是1)

      也有的说它的平均时间复杂度是O(N^1.3)


      假设有10万个数,直接插入排序时间复杂度N^2 = 10w*10w = 100亿

      希尔排序时间复杂度N*logN = 10w *log20w = 10w *17

      可以看出二者的效率差的很多。

      选择排序

      基本思想

      每次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部的待排序数据元素排完。

      直接选择排序

      几乎是最简单的一个排序,最好理解的排序,选出最小的数放到前面。

      这里实现的是一个比较优化的版本——一次选出两个数。

      代码实现
      void SelectSort(int* a, int n)
      {
      int begin = 0;
      int end = n - 1;
      while (begin < end)
      {
      int mini = begin;
      int maxi = end;
      for (int i = begin; i <= end; i++)
      {
      if (a[i] < a[mini])
      {
      mini = i;
      }
      if (a[i] > a[maxi])
      {
      maxi = i;
      }
      }
      Swap(&a[begin], &a[mini]);
      //begin和maxi的重叠情况
      /*解决数组下标为begin这个位置的元素恰好就是maxi,
      经过上面这个Swap(&a[begin], &a[mini]);
      把对应数组下标[maxi]这个位置的值换到了数组下标 [mini]这个位置上,
      此时的最大值在数组[mini]这个下标处。
      */
      if (begin == maxi)
      {
      maxi = mini;
      }
      Swap(&a[end], &a[maxi]);
      begin++;
      end--;
      }
      }
      注意

      begin和maxi的重叠情况,如下图所示情况,相关解释已在上面的代码中给出。

      几种常见的排序算法

      动画图解

      几种常见的排序算法

      时间复杂度

      O(N²)

      N,N-2.N-4…

      直接选择排序几乎是效率最差的一个排序

      堆排序

      解释

      堆排序涉及到二叉树了,(相关链接——​​【树】之二叉树(C语言)(含图解)_半生瓜のblog-CSDN博客​​),这篇文章中二叉树是用链表来实现的,除了用链表,二叉树其实还可以用数组来实现,按层序来处理。

      堆的逻辑结构是一棵完全二叉树(每一层都是满的,不满的是从左往右顺序放的)。——想象出来的

      几种常见的排序算法

      堆的物理结构是一个数组。

      几种常见的排序算法

      也就是说,我们实际用的是数组,但是可以把他想象成一个二叉树。并且可以通过下标来计算他们的父子关系。

      几种常见的排序算法

      计算关系:

      leftchild = parent* 2+1
      rightchild = parent* 2+2
      parent = (child-1) / 2

      例如:这个数组中下标为3的d,它的左孩子的下标就是3*2+1 =7, 是h,看图,确实是h。

      下标为4的e,它的父结点就是(4-1)/2 = 1(舍去小数)

      堆的两个特性

      结构性:用数组表示的完全二叉树。

      有序性:任一结点的关键字是其子树所有结点的最大值(或最小值)。

      最大堆(MaxHeap)也称大顶堆(大根堆);最大值

      最小堆(MinHeap)也称小顶堆(小跟堆);最小值


      大堆要求:树中所有的父亲都大于等于孩子。

      小堆要求:树中所有的父亲都小于等于孩子。

      大堆:对顶数据是最大的

      小堆:对顶数据是最小的

      示例:下图就是一个小堆

      几种常见的排序算法

      如何建堆

      堆排序本质就是选择排序,它也可以选数。

      示例:

      建小堆

      (大堆同理,换个符号)

      几种常见的排序算法

      向下调整算法

      前提:左右子树都是小堆。

      选出左右孩子中小的那个跟父亲比较,如果比父亲小就交换,然后再接着往下进行,依次类推。调到叶子结点就终止。

      动画演示

      几种常见的排序算法

      向下调整算法

      最多调整高度次logN

      void AdjustDown(int* a, int n, int root)
      {
      int parent = root;
      int child = parent * 2 + 1;//默认是左孩子
      while (child <n)//别超出数组下标的范围
      {
      //选出左右孩子中大的那一个并且有两个孩子
      //如果右孩子小于左孩子
      if (child+1 < n && a[child + 1] < a[child])
      {
      //因为默认是左孩子,所以将左孩子的下标+得到右孩子的下标
      child += 1;
      }
      //如果左孩子小于等于右孩子则直接来到这里,此时child的值就是左孩子的下标

      //只有一个孩子情况直接来到这里
      //选出左右孩子小的那一个再和父对比
      //如果孩子的值小于父亲的值,就交换这两个值(在数组中)的位置
      if (a[child] < a[parent])
      {
      Swap(&a[child], &a[parent]);// 交换这两个值
      //孩子的孩子重复上述操作
      parent = child;
      child = parent * 2 + 1;
      }
      else
      {
      break;
      }
      }
      }
      建堆

      (建大堆同理,换个符号即可。)

      如果左右子树不是小堆怎么办呢?

      那就不能直接使用向下调整算法,就得先把不是小堆的子树变成小堆。

      倒着从最后一棵非叶子结点的子树开始调。

      注意:这个数组是按照想象出来的那棵完全二叉树从上王往下一层一层的往里面存的,所以,数组的最后一个数据(下标为n-1),就是完全二叉树最下面一层的最右边的结点,从这个结点开始从上往下寻找各自的父亲(意思就=是上面的:倒着从最后一棵非叶子结点的子树开始调。)。


      建堆的时间复杂度是:O(N)

      推导过程:

      假设该堆为满二叉树,堆高度为h,假设每层高度hi,没层结点个数为ni,

      则建堆的时间复杂度为:

      几种常见的排序算法

      建堆的次数公式:

      几种常见的排序算法

      利用高中所学知识,错位相减法,化简得。

      t(n) = -h+2^h-1 ,(其中满二叉树的2^h-1 = N)

      void HeapSort(int* a,int n)
      {
      //注意这里的i是从最后一个结点开始找上面的父亲(最后一个非叶子结点)
      for (int i = (n - 1 - 1) / 2; i >= 0; i--)
      {
      AdjustDown(a, n, i);
      }
      }
      测试
      给出测试数组    int a[] = {7,2,6,3,4,1,5,9,8};

      结果

      几种常见的排序算法

      验证

      几种常见的排序算法

      建小堆完成。

      建大堆同理,换一个比较符号即可。

      堆排序为什么要建大堆?

      堆排序的本质是选择排序。

      如果是建小堆,最小数在数组顶部,已经被选出来了,那么在剩下的数中要建一个堆,但是剩下的数都乱了,需要重新建堆,才能选出下一个数,建堆的时间复杂度是O(N),这样建队就没有效率优势了。并且建堆选数,还不如直接遍历选数。

      第一次建堆O(N)

      剩下的部分选数,时间复杂度是logN

      示例:

      小堆

      几种常见的排序算法

      大堆

      几种常见的排序算法

      正确的方式——建大堆,然后交换第一个数和最后一个数,继续进行向下调整算法,第二个和导数第2个数…。

      代码实现
      void HeapSort(int* a,int n)
      {
      //注意这里的i是从最后一个结点开始找上面的父亲(最后一个非叶子结点)
      for (int i = (n - 1 - 1) / 2; i >= 0; i--)
      {
      AdjustDown(a, n, i);
      }

      int end = n - 1;
      while (end > 0)
      {
      Swap(&a[0], &a[end]);
      //剩下的数继续进行向下调整
      AdjustDown(a, end, 0);//(还有n-1个数,end正好就是n-1)
      end--;
      }
      }
      动画图解

      大约3min

      几种常见的排序算法

      打印输出结果:

      几种常见的排序算法

      性能测试:

      几种常见的排序算法

      交换排序

      基本思想

      比较值,交换顺序。

      冒泡排序

      前一个数比后一个数大(小)就交换位置。

      代码实现
      void BubbleSort(int* a, int n)
      {
      for (int i = 0; i < n; i++)
      {
      for (int j = 1; j < n - i; j++)
      {
      if (a[j - 1] > a[j])
      {
      Swap(&a[j - 1], &a[j]);
      }
      }
      }
      }

      或

      void BubbleSort(int* a, int n)
      {
      //end控制边界
      int end = n;
      while (end > 0)
      {
      for (int j = 1; j < end; j++)
      {
      if (a[j - 1] > a[j])
      {
      Swap(&a[j - 1], &a[j]);
      }
      }
      end--;
      }
      }

      优化

      已经有序了就不要交换了

      void BubbleSort(int* a, int n)
      {
      for (int i = 0; i < n; i++)
      {
      int exchange = 0;
      for (int j = 1; j < n - i; j++)
      {
      if (a[j - 1] > a[j])
      {
      swap(&a[j - 1], &a[j]);
      exchange = 1;
      }
      }
      if (exchange == 0)
      {
      break;
      }
      }
      }
      }
      对比

      和直接插入排序对比谁更好呢?

      直接插入排序。

      几种常见的排序算法

      如果是有序的情况下,他们的次数都是n。

      如果是接近有序,12354

      冒泡排序:N-1 + N -2

      直接插入排序: N

      (直接插入排序对有序,接近有序,局部有序,适应性更强。)

      快速排序

      基本思想

      任取待排序元素序列中的某个元素作为基准值,按照排序码将待排序集合分割成两子序列,左子序列中所有的元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,知道所有元素都排在相应位置上为止。

      挖坑法

      选一个位置的值做关键字(key),一般选择第一个或最后一个。

      几种常见的排序算法

      选谁做key,谁原本的位置就是个坑(Pivot),将key的值保存起来,然后它原来的位置就可以被覆盖了,

      动画图解1

      排一个数

      原数组

      几种常见的排序算法

      几种常见的排序算法

      第一次排序完成后结构如下

      几种常见的排序算法

      结构解释&动画图解2

      几种常见的排序算法

      此时关键字6的位置已经被确定,它左边的数都比它小,右边的数都比它大,如果它左右两边都是有序的,那么整个数组就有序里。

      那么怎么让他的左右两边都是有序的呢?

      分治递归。

      几种常见的排序算法

      每次只选一个数,这个数只要保证自己的位置确定了就行。

      这个区间被缩减到只有一个值的时候,就可以认为是有序的了。

      几种常见的排序算法

      几种常见的排序算法

      得到结构:有序数组

      几种常见的排序算法

      本质上和二叉树的遍历是类似的。

      代码实现
      void QuickSort(int* a, int left, int right)
      {
      //什么时候不需要递归了呢?
      //当这个区间不存在,或者只有一个值,都不用排
      if (left >= right)
      {
      return;
      }

      int begin = left;
      int end = right;
      int pivot = begin;//这里选择左边第一个做坑
      int key = a[begin];


      while (begin < end)
      {
      //左边有坑在右边找小于key的放到坑里
      while (begin < end && a[end] >= key)//注意条件限制,否则会发生错位
      {
      //往前倒,拿到最早遇到的小于key的数
      end--;
      }
      //小与key的放到左边的坑中,自己原来的位置形成新的坑
      a[pivot] = a[end];
      pivot = end;
      //右边有坑在左边找大的放到坑里
      while (begin < end && a[begin] <= key)
      {
      //往后倒,拿到最早遇到的大于key的数
      begin++;
      }
      //大于key的放到右边的坑中,自己形成新的坑
      a[pivot] = a[begin];
      pivot = begin;
      }
      //最后当他们两个相遇了,这个位置就是新的坑位置
      //再将key放到里面
      pivot = begin;
      a[pivot] = key;

      //确定完一个key的位置之后,开始将他们分成两段
      //如果左子区间和右子区间有序,这个数组就有序了
      QuickSort(a, left, pivot - 1);
      QuickSort(a, pivot + 1, right);
      }
      特性总结
      1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
      2. 时间复杂度:
        先看单趟排序的时间复杂度 ,O(N)
        最理想的情况就是每次选择的key都能二分 ,位置接近中间。最均匀的情况下,它能被分成一个满二叉树的形状。

      快速排序的时间复杂度是:N*log以2为底N的对数

      与上述排序的速度对比中我们也能看出来快速排序的快速。

      几种常见的排序算法

      最坏情况
      1. 快速排序什么情况下最坏?
        有序逆序,因为,这两种每次只能排好一个数,时间复杂度是O(N²)
      2. 官方对于上面这两种情况下有一种解决方法——三数区中。

      因为有序的情况下中间这个数恰好是二分的,两边不选最大和最小的数。

      代码如下

      int GetMidIndex(int* a, int left, int right);

      //快速排序——挖坑法
      void QuickSort(int* a, int left, int right)
      {
      //什么时候不需要递归了呢?
      //当这个区间不存在,或者只有一个值,都不用排
      if (left >= right)
      {
      return;
      }
      int index = GetMidIndex(a,left,right);
      Swap(&a[left], &a[index]);

      int begin = left;
      int end = right;
      int pivot = begin;//这里选择左边第一个做坑
      int key = a[begin];


      while (begin < end)
      {
      //左边有坑在右边找小于key的放到坑里
      while (begin < end && a[end] >= key)//注意条件限制,否则会发生错位
      {
      //往前倒,拿到最早遇到的小于key的数
      end--;
      }
      //小与key的放到左边的坑中,自己原来的位置形成新的坑
      a[pivot] = a[end];
      pivot = end;
      //右边有坑在左边找大的放到坑里
      while (begin < end && a[begin] <= key)
      {
      //往后倒,拿到最早遇到的大于key的数
      begin++;
      }
      //大于key的放到右边的坑中,自己形成新的坑
      a[pivot] = a[begin];
      pivot = begin;
      }
      //最后当他们两个相遇了,这个位置就是新的坑位置
      //再将key放到里面
      pivot = begin;
      a[pivot] = key;

      //确定完一个key的位置之后,开始将他们分成两段
      //如果左子区间和右子区间有序,这个数组就有序了
      QuickSort(a, left, pivot - 1);
      QuickSort(a, pivot + 1, right);
      }

      //三数取中
      int GetMidIndex(int* a, int left, int right)
      {
      int mid = (left + right) / 2;//右移>>一位效果相同,效率略高
      if (a[left] < a[mid])
      {
      if (a[mid] < a[right])
      {
      return mid;
      }
      else if (a[left] > a[right])
      {
      return left;
      }
      else
      {
      return right;
      }
      }
      else// a[left] >a[mid]
      {
      if (a[mid] > a[right])
      {
      return mid;
      }
      else if (a[left] < a[right])
      {
      return left;
      }
      else
      {
      return right;
      }
      }
      }
      小区间优化

      消除掉最后几层递归调用。效果很不明显。

      代码如下

      void QuickSort(int* a, int left, int right)
      {
      //什么时候不需要递归了呢?
      //当这个区间不存在,或者只有一个值,都不用排
      if (left >= right)
      {
      return;
      }
      int index = GetMidIndex(a,left,right);
      Swap(&a[left], &a[index]);

      int begin = left;
      int end = right;
      int pivot = begin;//这里选择左边第一个做坑
      int key = a[begin];


      while (begin < end)
      {
      //左边有坑在右边找小于key的放到坑里
      while (begin < end && a[end] >= key)//注意条件限制,否则会发生错位
      {
      //往前倒,拿到最早遇到的小于key的数
      end--;
      }
      //小与key的放到左边的坑中,自己原来的位置形成新的坑
      a[pivot] = a[end];
      pivot = end;
      //右边有坑在左边找大的放到坑里
      while (begin < end && a[begin] <= key)
      {
      //往后倒,拿到最早遇到的大于key的数
      begin++;
      }
      //大于key的放到右边的坑中,自己形成新的坑
      a[pivot] = a[begin];
      pivot = begin;
      }
      //最后当他们两个相遇了,这个位置就是新的坑位置
      //再将key放到里面
      pivot = begin;
      a[pivot] = key;

      //确定完一个key的位置之后,开始将他们分成两段
      //如果左子区间和右子区间有序,这个数组就有序了

      //小区间优化
      if (pivot - 1 - left > 10)//数据个数
      {
      QuickSort(a, left, pivot - 1);
      }
      else
      {
      //如果剩下的数小于等于10个
      //选一个其他排序来搞定这个这个111
      InsertSort(a + left, pivot - 1 - left + 1);
      }
      if (right - 1 - pivot > 10)
      {
      QuickSort(a, pivot + 1, right);
      }
      else
      {
      InsertSort(a + pivot + 1, right - (pivot + 1) + 1);
      }
      }
      左右指针法

      类似于挖坑法。

      也是先选一个key,从左右开始向中间移动,左边比key小的,右边找比key大的,然后两个交换位置,最后重叠的位置就是key的位置。

      动画图解

      一次排序

      几种常见的排序算法

      代码实现
      int PartSort2(int* a, int left, int right)
      {
      if (left >= right)
      {
      return;
      }
      int index = GetMidIndex(a, left, right);
      Swap(&a[left], &a[right]);

      int begin = left;
      int end = right;
      int key = a[begin];


      while (begin < end)
      {
      //找小
      while (begin < end && a[end] >= a[key])
      {
      --end;
      }
      //找大
      while (begin < end && a[begin] <= a[key])
      {
      ++begin;
      }
      Swap(&a[begin], &a[end]);
      }

      Swap(&a[key], &a[begin]);

      return key;
      }
      void QuickSort(int* a, int left, int right)
      {
      //什么时候不需要递归了呢?
      //当这个区间不存在,或者只有一个值,都不用排
      if (left >= right)
      {
      return;
      }

      int keyIndex = PartSort2(a, left, right);


      //确定完一个key的位置之后,开始将他们分成两段
      //如果左子区间和右子区间有序,这个数组就有序了

      //小区间优化
      if (keyIndex - 1 - left > 10)//数据个数
      {
      QuickSort(a, left, keyIndex - 1);
      }
      else
      {
      //如果剩下的数小于等于10个
      //选一个其他排序来搞定这个这个111
      InsertSort(a + left, keyIndex - 1 - left + 1);
      }
      if (right - 1 - keyIndex > 10)
      {
      QuickSort(a, keyIndex + 1, right);
      }
      else
      {
      InsertSort(a + keyIndex + 1, right - (keyIndex + 1) + 1);
      }
      }
      前后指针法

      cur找小,每次遇到比key小的值就停下来,++prev,交换prev和cur位置的值。

      动画图解

      几种常见的排序算法

      代码实现
      int QuickSort3(int* a, int left, int right)
      {
      int index = GetMidIndex(a, left, right);
      swap(&a[left], &a[index]);
      int key = left;
      int prev = left;
      int cur = left + 1;
      while (cur <= right)
      {
      if (cur < a[key] && ++prev != cur)//自己和自己交换没有意义——&&后面的条件
      {
      Swap(&a[cur], &a[prev]);
      }
      ++cur;
      }
      Swap(&a[key], &a[cur]);
      return prev;
      }
      //快速排序
      void QuickSort(int* a, int left, int right)
      {
      //什么时候不需要递归了呢?
      //当这个区间不存在,或者只有一个值,都不用排
      if (left >= right)
      {
      return;
      }

      int keyIndex = PartSort3(a, left, right);


      //确定完一个key的位置之后,开始将他们分成两段
      //如果左子区间和右子区间有序,这个数组就有序了

      //小区间优化
      if (keyIndex - 1 - left > 10)//数据个数
      {
      QuickSort(a, left, keyIndex - 1);
      }
      else
      {
      //如果剩下的数小于等于10个
      //选一个其他排序来搞定这个这个111
      InsertSort(a + left, keyIndex - 1 - left + 1);
      }
      if (right - 1 - keyIndex > 10)
      {
      QuickSort(a, keyIndex + 1, right);
      }
      else
      {
      InsertSort(a + keyIndex + 1, right - (keyIndex + 1) + 1);
      }
      }

      这三趟排序没有本质上的区别,只是单趟排序的规则不同。

      非递归法
      递归的缺陷

      在极端情况下会发生栈溢出。

      栈帧深度太深,栈空间不够用,可能会溢出。

      例如:

      递归实现1+2+3+…+n

      int f(int n)
      {
      return n<= 1?1:f(n-1)+n;
      }

      递归改非递归有两种方式

      1.直接改循环

      2.借助数据结构的栈模拟递归过程

      借助栈实现

      (栈的相关文章——​​栈​​)

      栈里面的区间就是需要被单趟分割排序的。

      void QuickSortNonR(int* a, int n)
      {
      //栈是后进先出的,想先出走就得先入右
      Stack st;
      StackInit(&st);
      StackPush(&st, n - 1);
      StackPush(&st, 0);
      while (!StackEmpty(&st))
      {
      int left = StackTop(&st);
      StackPop(&st);

      int right = StackTop(&st);
      StackPop(&st);

      int keyIndex = PartSort1(a, left, right);
      //left - keyIndex-1 keyIndex keyIndex+1 - right

      if ( keyIndex + 1 < right)
      {
      StackPush(&st, right);
      StackPush(&st, keyIndex + 1);
      }
      if (left < keyIndex - 1)//还有多个值
      {
      StackPush(&st, keyIndex -1 );
      StackPush(&st, left);
      }
      }
      }

      补充:

      函数调用建立栈帧,栈帧中存储局部变量参数等等。

      操作系统中内存的栈和堆与数据结构中的栈和堆要区分开来。

      队列也可以实现。

      归并排序

      基本思想

      归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法,的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使

      概念&动画图解

      如果一段区间分为左右两个半区间,假设都有序,用到归并算法。

      依次对比,取小的放到新的临时数组。

      当其中一个区间结束了直接把另外一个区间剩下的数拷过来。

      (类似于两个有序链表的归并)

      几种常见的排序算法

      那么归并之前左右子区间无序怎么办?

      往下分,递归接着归并。

      为了节省内存空间,分成单个归并完就拷贝回去。

      归并排序有空间复杂度的消耗,因为它的核心算法需要开辟一个临时数组。它的空间复杂度是O(N),这是它跟其他算法的主要差异。

      代码实现

      void _MergeSort(int* a, int left, int right, int* tmp)
      {
      if (left >= right)
      {
      return;
      }

      int mid = (left + right) >> 1;
      //left- mid.mid +1 - right——两段区间——如果这两段有序就可以进行归并了
      _MergeSort(a, left, mid, tmp);
      _MergeSort(a, mid + 1, right, tmp);

      //归并
      int begin1 = left, end1 = mid;
      int begin2 = mid + 1, end2 = right;

      int index = left;
      while (begin1 <= end1 && begin2 <= end2)
      {
      if (a[begin1] < a[begin2])
      {
      tmp[index++] = a[begin1++];
      }
      else
      {
      tmp[index++] = a[begin2++];
      }
      }
      while (begin1 <= end1)
      {
      tmp[index++] = a[begin1++];
      }
      while (begin2 <= end2)
      {
      tmp[index++] = a[begin2++];
      }

      //拷贝回去
      for (int i = left; i <= right; i++)
      {
      a[i] = tmp[i];
      }
      }
      void MergeSort(int* a, int n)
      {
      int* tmp = (int*)malloc(sizeof(int) * n);
      _MergeSort(a, 0, n - 1, tmp);
      free(tmp);
      }

      void Print(int* a, int n)
      {
      for (int i = 0; i < n; i++)
      {
      printf("%d ", a[i]);
      }
      }

      图解

      思想上类似于二叉树的后序遍历。

      图中指举出左侧一条路径。

      拆分——归并。

      几种常见的排序算法

      非递归实现

      void MergeSortNonR(int* a, int n)
      {
      int* tmp = (int*)malloc(sizeof(int) * n);
      //每组数据个数
      int gap = 1;
      while (gap < n)
      {
      for (int i = 0; i < n; i += 2 * gap)
      {
      // [i, i+gap-1] [i+gap,i+2*gap-1]
      int begin1 = i, end1 = i + gap - 1;
      int begin2 = i + gap, end2 = i + 2 * gap - 1;

      // 归并过程中右半区间可能就不存在
      if (begin2 >= n)
      break;

      // 归并过程中右半区间算多了, 修正一下
      if (end2 >= n)
      {
      end2 = n - 1;
      }

      int index = i;
      while (begin1 <= end1 && begin2 <= end2)
      {
      if (a[begin1] < a[begin2])
      {
      tmp[index++] = a[begin1++];
      }
      else
      {
      tmp[index++] = a[begin2++];
      }
      }

      while (begin1 <= end1)
      {
      tmp[index++] = a[begin1++];
      }

      while (begin2 <= end2)
      {
      tmp[index++] = a[begin2++];
      }

      // 拷贝回去
      for (int j = i; j <= end2; ++j)
      {
      a[j] = tmp[j];
      }
      }
      gap *= 2;
      }
      free(tmp);
      }

      无论递归非递归归并排序的时间复杂度都是0(N*logN)。

      补充

      归并排序也叫做外排序。还可以对文件中的数据进行排序。

      假设10的数据放到硬盘的文件中,要排序,如何排呢?
      可能内存不够,假设有一个G的内存可用,10g的文件拆分成10个1G的文件,并且让10个1G的文件有序。

      一次读文件,每一读1G到内存中,放到一个数组,用快速排序对其排序,再写到一个文件,再继续读下一个1G的数据。

      特性总结

      1. 归并排序的缺点在于需要O(N)的空间复杂度,归并排序的思考更多是解决在磁盘中的外排序问题。
      2. 时间复杂度:O(N*lohN)
      3. 空间复杂度:O(N)
      4. 稳定性:稳定

      排序算法复杂度及稳定性分析

      几种常见的排序算法

      快速排序加了三数区中基本不会出现最坏情况。

      稳定性是看相同的值相对顺序是否发生变化。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_15333750/5873430,作者:半生瓜的blog,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:VSCode:code helper进程导致Mac的CPU使用率很高

      下一篇:express学习40-多人管理31数据分页2

      相关文章

      2025-03-10 09:53:00

      快速排序-Java版本

      快速排序-Java版本

      2025-03-10 09:53:00
      java , Java , 快速排序 , 排序算法
      2024-08-08 09:32:16

      二分查找算法案例

      折半查找(二分查找)是一种常见且高效的查找算法,适用于有序数组。其基本思想是首先将数组按照中间位置折半,然后判断待查找元素与中间元素的大小关系,从而确定待查找元素在左半部分还是右半部分。通过不断折半和判断,最终找到待查找元素或确定其不存在。

      2024-08-08 09:32:16
      java , 排序算法 , 算法
      2024-06-25 09:53:21

      经典排序算法之-----选择排序(Java实现)

      经典排序算法之-----选择排序(Java实现)

      2024-06-25 09:53:21
      java , 排序算法
      2024-06-24 08:15:13

      排序算法思想描述

      排序算法思想描述

      2024-06-24 08:15:13
      排序算法
      2024-06-04 08:57:22

      考研数据结构之排序(8.6)——选择类排序之简单选择排序(C表示)

      考研数据结构之排序(8.6)——选择类排序之简单选择排序(C表示)

      2024-06-04 08:57:22
      排序算法 , 数据结构 , 算法
      2024-05-28 08:41:37

      下一个排列。实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列(即,组合出下一个更大的整数)。

      下一个排列。实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列(即,组合出下一个更大的整数)。 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。

      2024-05-28 08:41:37
      leetcode , 排序算法 , 算法
      2024-05-28 08:15:10

      【数据结构】排序算法大总结

      所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

      2024-05-28 08:15:10
      排序算法 , 数据结构
      2024-05-21 07:28:16

      给定一个数组arr,长度为n, 表示n个服务员,每个人服务一个人的时间。 给定一个正数m,表示有m个人等位。 如果你是刚来的人,请问你需要等多久?

      给定一个数组arr,长度为n, 表示n个服务员,每个人服务一个人的时间。 给定一个正数m,表示有m个人等位。 如果你是刚来的人,请问你需要等多久?

      2024-05-21 07:28:16
      rust , 排序算法 , 算法
      2024-05-21 07:14:00

      一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。 给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和

      一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。 给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和

      2024-05-21 07:14:00
      排序算法 , 数据结构 , 算法
      2024-05-13 08:43:39

      一个无序数组长度为n,所有数字都不一样,并且值都在[0...n-1]范围上。 返回让这个无序数组变成有序数组的最小交换次数。

      一个无序数组长度为n,所有数字都不一样,并且值都在[0…n-1]范围上。 返回让这个无序数组变成有序数组的最小交换次数。

      2024-05-13 08:43:39
      排序算法 , 空间复杂度 , 算法
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5264815

      查看更多

      最新文章

      二分查找算法案例

      2024-08-08 09:32:16

      排序算法思想描述

      2024-06-24 08:15:13

      下一个排列。实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列(即,组合出下一个更大的整数)。

      2024-05-28 08:41:37

      给定一个数组arr,长度为n, 表示n个服务员,每个人服务一个人的时间。 给定一个正数m,表示有m个人等位。 如果你是刚来的人,请问你需要等多久?

      2024-05-21 07:28:16

      一个无序数组长度为n,所有数字都不一样,并且值都在[0...n-1]范围上。 返回让这个无序数组变成有序数组的最小交换次数。

      2024-05-13 08:43:39

      双指针【算法入门】

      2024-04-18 09:15:34

      查看更多

      热门文章

      排序算法python版(6)-快速排序算法

      2023-04-27 07:51:25

      排序算法 快速排序 python

      2023-04-06 10:10:16

      笔试常考排序算法(冒泡选择)

      2023-05-08 10:00:50

      排序算法python版(7)-计数排序算法

      2023-05-08 10:02:20

      python学习——简单排序

      2023-05-08 10:01:01

      你知道多少排序算法?

      2024-04-03 09:23:39

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      排序算法python版(7)-计数排序算法

      排序算法 快速排序 python

      二分查找算法案例

      笔试常考排序算法(冒泡选择)

      下一个排列。实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列(即,组合出下一个更大的整数)。

      你知道多少排序算法?

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号