爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Python和单元测试那些事儿

      首页 知识中心 软件开发 文章详情页

      Python和单元测试那些事儿

      2024-09-25 10:14:21 阅读次数:36

      python,编程开发

      以前我是不写任何测试的,后来偶尔写单元测试,现在我主动写单元测试 ----- 不得 不承认,测试是有其存在必要性的,要说为什么的话,大概又会引发语言的强弱类型和 是否静态语言之争了吧。

      就目前而言,个人认为写单元测试的好处有以下几点:

      当修改了代码之后,单元测试可以保证API不会发生变化(假设原需求就不需API发生 变化)。这点可能一般情况下没什么感觉,但是当你去修改前辈留下的代码的时候, 你就会感谢他写了单元测试,最少让你知道了从功能上,这个函数是干什么的,而且 能保证你修改了函数内部实现,但是不影响函数功能。

      写单元测试的时候会回想函数的作用,从而自动对函数进行回想和 review。

      缺点嘛:耗费时间。单元测试和文档一样,属于非常重要,但是非常耗费时间的工作, 因为要考虑齐全,考虑到的边界条件越多,测试覆盖率越高,程序越可靠,而想这些东 西是很耗费时间精力的。

      吐槽完毕,我们来说说目前我知道的几个和测试有关的东西(全程 Python 3)。

      Mock

      Mock是个好东西呀,遇到测试中出现的不可预知的或者不稳定因素,就用 Mock 来代 替。例如查询数据库(当然像目前我们用的MongoDB,由于特别灵活,可以直接在代码里 把相应的collection替换掉),例如异步任务等。举个例子:

      import logging
      from unittest.mock import Mock
      logging.basicConfig(level=logging.DEBUG)
      #  code
      class ASpecificException(Exception):
          pass
      def foo():
          pass
      def bar():
          try:
              logging.info("enter function <foo> now")
              foo()
          except ASpecificException:
              logging.exception("we caught a specific exception")
      #  unittest
      def test_foo():
          foo = Mock(side_effect=ASpecificException())  # noqa
          logging.info("enter function <bar> now")
          bar()
          logging.info("everything just be fine")
      if __name__ == "__main__":
          test_foo()
      

      运行一下:

      root@arch tests: python test_demo.py
      INFO:root:enter function <bar> now
      INFO:root:enter function <foo> now
      INFO:root:everything just be fine
      

      一个简单的测试就这么写好了。来,跟我念,Mock 大法好呀!

      doctest

      doctest属于比较简单的测试,写在 docstring 里,这样既能测试用,又能当文档 示例,是在是好用之极啊。缺点是,如果测试太复杂,doctest就显得太臃肿了(例如 如果测试之前要导入一堆东西)。举个例子:

      import logging
      logging.basicConfig(level=logging.DEBUG)
      def foo():
          """A utility function that returns True
          >>> foo()
          True
          """
          return True
      if __name__ == "__main__":
          import doctest
          logging.debug("start of test...")
          doctest.testmod()
          logging.debug("end of test...")
      

      测试结果:

      root@arch tests: python test_demo.py
      DEBUG:root:start of test...
      DEBUG:root:end of test...
      

      unittest

      这个文档确实有点长,我感觉还是仔细去读一下文档比较好(虽然我也没读完)。

      import unittest
      class TestStringMethods(unittest.TestCase):
          def setUp(self):
              self.alist = []
          def tearDown(self):
              print(self.alist)
          def test_list(self):
              for i in range(5):
                  self.alist.append(i)
      if __name__ == '__main__':
          unittest.main()
      
      root@arch tests: python test_demo.py
      [0, 1, 2, 3, 4]
      .
      ----------------------------------------------------------------------
      Ran 1 test in 0.001s
      

      OK

      unittest框架配合上Mock,单元测试基本无忧啦。

      pytest

      上面的单元测试跑起来比较麻烦,当然也可以写一个脚本遍历所有的单元测试文件,然 后执行。不过 pytest 对unittest有比较好的支持。

      pytest默认支持的是 函数 风格的测试,但是我们可以不用这一块嘛(而且很多时候 还是很有用的)。走进项目根目录,输入 pytest 就可以啦。它会自动发现 test_ 开头的文件,然后执行其中 test_ 开头的函数和 unittest 的 test_ 开头的 方法。

      root@arch tests: pytest
      ========================================================= test session starts =========================================================
      platform linux -- Python 3.5.2, pytest-3.0.5, py-1.4.31, pluggy-0.4.0
      rootdir: /root/tests, inifile:
      collected 1 items
      test_afunc.py .
      ====================================================== 1 passed in 0.03 seconds =======================================================
      root@arch tests:
      

      总结

      编译器没给python做检查,就只有靠我们手写测试了 😦

      另外其实 pytest 和 unittest 都有很多强大的特性,例如 fixture(不知道 咋翻译好),例如 skip 掉某一部分测试。当然我也是知之甚少,所以还是看文档吧。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://alex007.blog.csdn.net/article/details/105979460,作者:Alex_996,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:java中interrupt,interrupted和isInterrupted的区别

      下一篇:Swift解读专题一——Swift2.2语言预览

      相关文章

      2025-04-14 09:24:23

      python打印宝塔代码

      python打印宝塔代码

      2025-04-14 09:24:23
      python
      2025-04-09 09:16:56

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56
      python , 代码 , 方法 , 机器学习 , 示例
      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42
      debug , log4j , logback , logging , python
      2025-04-09 09:16:42

      python简单介绍及基础知识(一)

      编程语言,是用来实现某种功能的编写给计算机读取和执行的语言

      2025-04-09 09:16:42
      print , python , 下划线 , 变量 , 变量名 , 编程语言 , 语言
      2025-04-09 09:16:00

      使用Python扩展PAM(part 2)

      在上篇part1 中编译的pam_python.so可以用Python代码进行一些额外的验证操作。动态密码,虚拟账号,都是可行的,只要编写的python鉴权脚本符合相应的PAM规范即可使用。

      2025-04-09 09:16:00
      python , 使用 , 密码 , 配置
      2025-04-09 09:13:27

      1行Python代码,把Excel转成PDF,python-office功能更新~

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27
      Excel , pdf , python , 代码 , 程序员
      2025-04-09 09:13:17

      python性能测试之pyperformance

      python性能测试之pyperformance

      2025-04-09 09:13:17
      json , python , Python , 性能 , 文档 , 测试
      2025-04-09 09:13:17

      IronPython 与 c# 交互之导入Python模块的两种方法

      当我们要在C#中调用python时,有时候需要用到python里的一些函数,比如进行一些数学运算,开方,取对数,这个时候我们需要用到python里的math模块(类似C#的命名空间,但概念不完全一样).

      2025-04-09 09:13:17
      python , 函数 , 导入 , 方法 , 模块
      2025-04-07 10:28:48

      如何在交互式环境中执行Python程序

      如何在交互式环境中执行Python程序

      2025-04-07 10:28:48
      python , 命令行 , 缩进
      2025-04-07 10:28:48

      Python网络爬虫真实的URL看来真不能光凭着XHR找

      Python网络爬虫真实的URL看来真不能光凭着XHR找

      2025-04-07 10:28:48
      python
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5238189

      查看更多

      最新文章

      python打印宝塔代码

      2025-04-14 09:24:23

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56

      python简单介绍及基础知识(一)

      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42

      使用Python扩展PAM(part 2)

      2025-04-09 09:16:00

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27

      查看更多

      热门文章

      Java学习之算术运算符两只老虎

      2023-04-19 09:23:13

      Linux实用命令authconfig和authconfig-tui(备忘)

      2023-03-16 07:49:58

      Python高级变量类型

      2024-09-24 06:30:08

      python学习——面向对象编程

      2023-04-25 10:20:57

      一个简单的http server,处理get和post请求,Python实现

      2023-04-13 09:31:09

      Python数据库测试实战教程

      2023-06-07 07:31:52

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      [快学Python3]目录与文件操作

      Python IDLE常用快捷键

      利用Java代码保存corporate wiki源代码

      JAVA实战———java基础二

      [快学Python3]String(字符串)

      JAVA实战————4、水仙花数

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号