爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      树回归python实现

      首页 知识中心 软件开发 文章详情页

      树回归python实现

      2024-07-18 10:17:44 阅读次数:33

      python,编程开发

      引言

      在我前面一篇博客预测数值型数据:回归一文中提到了线性回归包含了一些强大的方法,但除了加权线性回归,其余线性回归方法创建的模型需要拟合所有的数据样本即构建一个全局的模型,但实际应用场景下,很多问题是非线性的,特征不仅多而且趋于复杂,不可能用全局线性模型来拟合任何数据。
      那么我们该如何解决这个问题呢?有人提出了将数据集切分成很多很多份易于建模的数据,然后利用前面提到的线性回归技术来建模。
      那么本文就介绍了一种树构建算法CART(Classification And Regression Trees,分类回归树)。本文先利用CART算法构建回归树并介绍其中的剪枝技术,并引入更高级的模型树算法。

      复杂数据的局部性建模

      我们在学习决策树的时候发现,决策树不断地将数据切分成小数据集,知道所有目标变量完全相同,或者数据不能再切分为止。它本质上是一种贪心算法,并不关心数据是否可以达到全局最优。那么对于树回归,它的优缺点及适用数据类型又有哪些呢?

                                             树回归
      

      优点:可以对复杂和非线性的数据建模
      缺点:结果不易理解
      适用数据类型:数值型和标称型数据

      决策树算法如ID3,它是每次选取当前最佳特征来分割数据,并按照该特征的所有可能取值来切分。有人认为这种切分方法太迅速,因为数据根据当前特征切分后,该特征就不再起作用。所以有观点提出了二元切分法,如果数据的某个特征值等于切分所要求的值,那么这些数据就进入树的左子树,反之则进入树的右子树。另外ID3又有不能处理连续型特征的问题,二元切分法同样能解决这个问题。
      CART树构建算法就是使用二元切分法来处理连续型变量,对CART稍作修改使其能处理回归问题,回归树与分类树的思路类似,但叶子节点的数据类型不是离散型而是连续型。

                                            树回归的一般方法
      
      1. 收集数据:采用任意方法收集数据
      2. 准备数据:需要数值型数据,标称型数据应该映射成二值型数据
      3. 分析数据:绘出数据的二维可视化显示结果,以字典方式生成树
      4. 训练算法:大部分时间都花费在叶节点树模型的构建上
      5. 使用算法:使用训练出的树做预测,预测结果还可以用来做很多事

      连续和离散型特征的树的构建

      我们使用字典来存储树的数据结构,也可以用面向对象的编程模式来实现数据结构,如下所示:

      class treeNode():
          def __init__(self,feat,val,right,left):
              featureToSplitOn = feat
              valueOfSplit = val
              rightBranch = right
              leftBranch = left
      

      本文构建树的伪代码如下所示:
      找到最佳的待切分特征:
      如果该节点不能再分,将该节点存为叶节点
      执行二元切分
      在左子树调用createTree( )方法
      在右子树调用createTree( )方法
      CART算法的实现代码:

      from numpy import *
      
      def loadDataSet(fileName):      #general function to parse tab -delimited floats
          dataMat = []                #assume last column is target value
          fr = open(fileName)
          for line in fr.readlines():
              curLine = line.strip().split('\t')
              fltLine = map(float,curLine) #map all elements to float()
              dataMat.append(fltLine)
          return dataMat
      
      def binSplitDataSet(dataSet, feature, value):
          mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
          mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:]
          return mat0,mat1
      def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
          feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
          if feat == None: return val #if the splitting hit a stop condition return val
          retTree = {}
          retTree['spInd'] = feat
          retTree['spVal'] = val
          lSet, rSet = binSplitDataSet(dataSet, feat, val)
          retTree['left'] = createTree(lSet, leafType, errType, ops)
          retTree['right'] = createTree(rSet, leafType, errType, ops)
          return retTree  
      

      将CART算法用于回归

      我们知道决策树可以用来分类,核心思想是计算给定节点的信息熵增益,那么如何将树应用到回归呢,那么我们可以将问题这样定义:如何计算连续性数值的信息熵增益。 具体思路如下:

      step1.计算所有数据的均值
      step2.计算每条数据的值到均值的差值的绝对值

      上述两个步骤就是误差计算准则,前面一节我们又讲述了树的构建算法,那么接下来我们就正式进入到回归树的构建中。回归树的构建中对chooseBestSplit()函数的实现最困难,该函数主要目的是找到数据集切分的最佳位置。核心思想的伪代码如下:

      对每个特征:
      	 -对每个特征:
      		- -将数据集切分成两份
      		- -计算切分的误差
      		- -如果当前误差小于当前最小误差,那么当前切分设定为最佳切分并更新最小误差
      

      剪枝

      一棵树如果节点过多,表明该模型很可能对数据过拟合了(overfitting),对应的为了避免过拟合,降低决策树的复杂度,提出了一种剪枝(pruning)的方法。树剪枝分为两种,一种叫预剪枝,一种叫后剪枝,预剪枝一般是在选择节点时加入的提前中止条件,这种方法存在些许不足,对误差的数量级敏感。后剪枝则是一个比较理想的方法,主要通过训练集来分割叶节点,用测试集来判断如果合并叶节点是否有降低误差。

      模型树

      上面我们用树建模时是将叶节点简单地设定为常数值,但是还有一种方法是将叶节点设定为分段线性函数。即所谓的分段线性模型。也就是所谓的模型树

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_15996214/6105864,作者:小虎AI实验室,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:使用python做格兰杰因果检验

      下一篇:python四个魔法方法__len__,__getitem__,__setitem__,__delitem__

      相关文章

      2025-04-14 09:24:23

      python打印宝塔代码

      python打印宝塔代码

      2025-04-14 09:24:23
      python
      2025-04-09 09:16:56

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56
      python , 代码 , 方法 , 机器学习 , 示例
      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42
      debug , log4j , logback , logging , python
      2025-04-09 09:16:42

      python简单介绍及基础知识(一)

      编程语言,是用来实现某种功能的编写给计算机读取和执行的语言

      2025-04-09 09:16:42
      print , python , 下划线 , 变量 , 变量名 , 编程语言 , 语言
      2025-04-09 09:16:00

      使用Python扩展PAM(part 2)

      在上篇part1 中编译的pam_python.so可以用Python代码进行一些额外的验证操作。动态密码,虚拟账号,都是可行的,只要编写的python鉴权脚本符合相应的PAM规范即可使用。

      2025-04-09 09:16:00
      python , 使用 , 密码 , 配置
      2025-04-09 09:13:27

      1行Python代码,把Excel转成PDF,python-office功能更新~

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27
      Excel , pdf , python , 代码 , 程序员
      2025-04-09 09:13:17

      python性能测试之pyperformance

      python性能测试之pyperformance

      2025-04-09 09:13:17
      json , python , Python , 性能 , 文档 , 测试
      2025-04-09 09:13:17

      IronPython 与 c# 交互之导入Python模块的两种方法

      当我们要在C#中调用python时,有时候需要用到python里的一些函数,比如进行一些数学运算,开方,取对数,这个时候我们需要用到python里的math模块(类似C#的命名空间,但概念不完全一样).

      2025-04-09 09:13:17
      python , 函数 , 导入 , 方法 , 模块
      2025-04-07 10:28:48

      如何在交互式环境中执行Python程序

      如何在交互式环境中执行Python程序

      2025-04-07 10:28:48
      python , 命令行 , 缩进
      2025-04-07 10:28:48

      Python网络爬虫真实的URL看来真不能光凭着XHR找

      Python网络爬虫真实的URL看来真不能光凭着XHR找

      2025-04-07 10:28:48
      python
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5227571

      查看更多

      最新文章

      python打印宝塔代码

      2025-04-14 09:24:23

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56

      python简单介绍及基础知识(一)

      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42

      使用Python扩展PAM(part 2)

      2025-04-09 09:16:00

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27

      查看更多

      热门文章

      Java学习之算术运算符两只老虎

      2023-04-19 09:23:13

      Linux实用命令authconfig和authconfig-tui(备忘)

      2023-03-16 07:49:58

      Python高级变量类型

      2024-09-24 06:30:08

      python学习——面向对象编程

      2023-04-25 10:20:57

      一个简单的http server,处理get和post请求,Python实现

      2023-04-13 09:31:09

      Python数据库测试实战教程

      2023-06-07 07:31:52

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      Python: email-validator验证Email地址

      04Python判断(if)语句

      CentOS2.7升级Python到3.5后,yum和gnome-twear-tool 出现问题

      Python|可视化数据分析之公众号得分

      Python编程:subprocess执行命令行命令

      08Python变量进阶

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号