爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      拓端tecdat|CNN+ Auto-Encoder代码编写实现无监督Sentence Embedding ( 基于Tensorflow)

      首页 知识中心 软件开发 文章详情页

      拓端tecdat|CNN+ Auto-Encoder代码编写实现无监督Sentence Embedding ( 基于Tensorflow)

      2024-07-29 08:01:46 阅读次数:36

      TensorFlow,卷积

      前言

      这篇文章会利用到上一篇: 基于Spark /Tensorflow使用CNN处理NLP的尝试的数据预处理部分,也就是如何将任意一段长度的话表征为一个2维数组。

      基本思路是,通过编码解码网络(有点类似微软之前提出的对偶学习),先对句子进行编码,然后进行解码,解码后的语句要和原来的句子尽可能的接近。训练完成后,我们就可以将任意一个句子进行编码为一个向量,这算是Sentence Embedding的一种新的实现。最大的好处是,整个过程无需标注语料,属于无监督类学习。这次我还在编码前引入卷积网络,不过效果有待验证。

      准备工作

      我们假设大家已经准备了两个数据集,具体可以参考上一篇文章的Spark预处理部分:

      已经分好词的语句词到vector的字典

      然后我们使用如下函数来进行处理:

      def next_batch(batch_num, batch_size, word_vec_dict):
      with open(WORD_FILE) as wf:
      line_num = 0
      start_line_num = batch_num * batch_size
      batch_counter = 0
      result = []
      for words in wf:
      result1 = []
      line_num += 1

      if line_num > start_line_num:
      batch_counter += 1
      for word in words.split(" "):
      if word in word_vec_dict:
      result1.append(word_vec_dict[word])
      if len(result1) < SEQUENCE_LENGTH:
      for i in range(SEQUENCE_LENGTH - len(result1)):
      result1.append(np.zeros(shape=(VOCAB_SIZE, 1)).tolist())
      result.append([str(line_num), result1[0:SEQUENCE_LENGTH]])
      if batch_counter == batch_size:
      return result

      字典的格式是: word + 空格 + 100个逗号分隔的数字文本内容格式是: 通过空格分隔的已经分好词的句子

      因为这次测试数据集有点大,所以没办法一次性载入到内存,只能分批了。缺点是,每一次都需要重新打开文件,为了减少打开文件次数,程序后半部分做了一些优化处理,基本方式为,一次性从文件里取batch_size 条数据,然后让Tensorflow 再分 batch_size / mini_train_batch_size 次进行迭代。每次迭代给的样本量还是比较影响效果的,4000和200比,有20%左右的差异。

      构建模型

      我尝试了如下两个拓扑,第一个是带卷积的:

      Input(段落) -> 卷积 -> 池化 -> 卷积 -> 池化 -> encoder -> encoder -> decoder -> decoder -> lost function (consine夹角)

      第二个则是不带卷积:

      Input(段落) -> encoder -> encoder -> decoder -> decoder -> lost function (consine夹角)基本上是两层卷积,两层编解码器。

      训练完成后,就获得编码器的所有参数,利用encoder_op 对所有的语句进行编码,从而实现所有语句得到一个唯一的向量(128维)表示。

      大概准备了 60多万条语句进行训练,经历了50*60轮迭代后,不带卷积最后loss 大概是从1.1 下降到0.94的样子。如果进行更多迭代,提供更多训练数据,应该可以进一步降低。

      带卷积的收敛较快,loss 从0.5 经过3000轮迭代,可以下降到0.1 左右。

      因为语料比较隐私,无法提供,但是可以描述下大致的结论,随机找一段话,然后寻找相似的,目前来看,不带卷积的效果非常好,带卷积的因为卷积后信息损失太大,在encoder-decoder阶段感觉无法训练了,最后趋同,因此需要对卷积进行较大调整。关于NLP的卷积,其实我们不一定要保证卷积核的宽度或者高度保持和word embedding的size一样,因为对两个word截取其一般,我认为应该还是有一定的相似度的。

      在训练过程中,损失函数我尝试了:

      xent =tf.reduce_mean(tf.pow([y_true, y_pred],2), name="xent")

      以及

      consine = tf.div(tf.reduce_sum(tf.multiply(y_pred, y_true)), tf.multiply(tf.sqrt(tf.reduce_sum(tf.multiply(y_pred, y_pred))), tf.sqrt(tf.reduce_sum(tf.multiply(y_true, y_true))))) xent = tf.reduce_sum(tf.subtract(tf.constant(1.0), consine))

      因为采用欧式距离,我们难以确定相似度的阈值,而cosine是一个比较容易衡量的值。所以这里选择了consine作为损失函数。我没有找到Tensorflow的实现,所以完全根据consine公式自己实现了一个。

      对于Optimizer,我尝试了

      train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(xent) train_step = tf.train.RMSPropOptimizer(learning_rate).minimize(xent)

      目前来看,RMSPropOptimizer效果好很多。

      总结

      现阶段大量优秀的人才都投入到了深度学习上,所以深度学习也取得了越来越多的进展,用法也越来越多,尤其是对抗学习,加强学习,对偶学习的发展让深度学习可以做的事情越来越多。深度学习在NLP文本分类,特征抽取方面,我觉得还是有潜力可挖的。不过,我觉得深度学习其实是把机器学习的门槛提的更高了,虽然越来越多的工具(比如Tensorflow)和已知的各种实践似乎在降低某些门槛。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_14293657/5851079,作者:拓端tecdat,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:Java阻塞式线程同步队列BlockingQueue,SynchronousQueue和TransferQueue

      下一篇:拓端数据|R语言代写阈值模型代码示例

      相关文章

      2025-05-14 09:51:21

      python 加载 TensorFlow 模型

      为了加载一个TensorFlow模型,我们首先需要明确模型的格式。TensorFlow支持多种模型格式,但最常见的两种是SavedModel和HDF5(对于Keras模型)。

      2025-05-14 09:51:21
      model , TensorFlow , 加载 , 模型 , 示例 , 签名
      2025-03-21 06:59:32

      OpenCV学习笔记八(图像模糊)

      OpenCV学习笔记八(图像模糊)

      2025-03-21 06:59:32
      像素 , 卷积 , 图像
      2025-03-17 07:50:34

      【人工智能基础】学习线路

      【人工智能基础】学习线路

      2025-03-17 07:50:34
      TensorFlow , 人工智能 , 学习 , 深度 , 神经网络
      2025-03-17 07:50:34

      【人工智能基础07】卷积神经网络基础(CNN):卷积神经网络结构、各层计算原理,以及常见卷积神经网络

      【人工智能基础07】卷积神经网络基础(CNN):卷积神经网络结构、各层计算原理,以及常见卷积神经网络

      2025-03-17 07:50:34
      卷积 , 矩阵 , 神经网络 , 输入
      2025-02-14 08:19:53

      win10系统使用Faster-RCNN-TensorFlow-python3-master训练自己的数据集(一)

      win10系统使用Faster-RCNN-TensorFlow-python3-master训练自己的数据集(一)

      2025-02-14 08:19:53
      TensorFlow , 安装 , 版本 , 虚拟环境
      2025-02-10 08:56:02

      深度学习基础(二)卷积神经网络(CNN)

      深度学习基础(二)卷积神经网络(CNN)

      2025-02-10 08:56:02
      卷积 , 图像 , 图像处理 , 学习 , 模型 , 神经网络
      2024-12-11 06:19:22

      深度学习基础案例2--从0到1构建CNN卷积神经网络(以识别CIFR10为例)

      深度学习基础案例2--从0到1构建CNN卷积神经网络(以识别CIFR10为例)

      2024-12-11 06:19:22
      卷积 , 梯度 , 模型 , 训练
      2024-12-02 09:46:44

      基于TensorFlow和OpenCV的物种识别与个体相似度分析

      OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV由英特尔公司在1999年发起,并在2000年以开源的方式发布。该库被设计为高效的计算机视觉应用程序开发工具,支持多种编程语言(如C++、Python、Java)和平台(如Windows、Linux、Mac OS、Android、iOS)。

      2024-12-02 09:46:44
      OpenCV , TensorFlow
      2024-11-28 09:02:25

      深度学习之上采样方法PixelShuffle

      深度学习之上采样方法PixelShuffle

      2024-11-28 09:02:25
      像素 , 卷积
      2024-11-21 09:55:25

      Tensorflow入门(1.0)

      Tensorflow入门(1.0)

      2024-11-21 09:55:25
      TensorFlow , 会话 , 创建 , 张量 , 操作
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5256423

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号