爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      数学建模算法与应用 第1章 线性规划

      首页 知识中心 大数据 文章详情页

      数学建模算法与应用 第1章 线性规划

      2024-10-29 09:05:48 阅读次数:29

      第1章 线性规划

      线性规划是数学规划领域的重要分支,广泛应用于资源配置、生产计划、物流管理等领域。它主要用于解决如何在满足一定约束条件下,使目标函数(如成本、利润等)达到最大或最小的问题。第一章将介绍线性规划的基本概念、投资的收益和风险,以及与之相关的求解方法和实际应用。

      1.1 线性规划问题

      线性规划问题是指在满足若干线性等式或不等式约束的条件下,找到一个最优解以使某个线性目标函数最大化或最小化。目标函数和约束条件都由变量的线性组合构成。典型的线性规划问题包括产品组合优化、生产调度以及资源分配等。

      在数学表达形式中,线性规划通常可以表示为:

      • 目标函数:在一定条件下,最大化或最小化某个线性组合。

      • 约束条件:受限于一系列的线性等式或不等式。

      例如,某工厂希望在满足原料供应和市场需求的情况下,最大化生产利润。这种问题可以用线性规划模型来描述,通过对不同产品的产量进行合理安排,从而使利润最大化。

      线性规划问题可以应用于多个实际场景,包括但不限于:

      • 物流运输:如何在最低成本下将货物从多个工厂运送到多个目的地。

      • 生产调度:在生产过程中,如何安排机器的运行时间以达到最大化产出。

      • 资源分配:在有限资源下(如时间、人力、资金),如何合理安排以实现最大化收益。

      我们可以使用表格来总结线性规划问题的一般形式:

      项目 描述
      目标函数 最大化或最小化某线性组合
      约束条件 一系列线性等式或不等式
      应用场景 产品组合优化、生产调度、资源分配
      Matlab代码示例

      为了更好地理解线性规划问题的求解方法,我们可以使用Matlab来进行求解。下面是一个简单的Matlab代码示例,解决一个线性规划问题:

       

      % 定义目标函数的系数(需要最小化的目标函数)
      f = [-3; -5];  % 目标函数:最大化 3x + 5y
      
      % 定义不等式约束条件的系数
      A = [1, 0; 0, 2; 3, 2];  % 约束条件矩阵
      b = [4; 12; 18];  % 约束条件向量
      
      % 定义变量的边界
      lb = [0; 0];  % 变量下界
      
      % 使用linprog函数求解线性规划问题
      [x, fval, exitflag] = linprog(f, A, b, [], [], lb);
      
      % 输出结果
      if exitflag == 1
          fprintf('最优解:x = %.2f, y = %.2f\n', x(1), x(2));
          fprintf('最大化目标函数值:%.2f\n', -fval);
      else
          disp('未找到最优解');
      end

      上述代码通过定义目标函数和约束条件,使用linprog函数求解线性规划问题。在这个例子中,我们的目标是最大化3x + 5y,并且有若干约束条件,最终得到了最优解。

      Matlab中的线性规划函数

      在Matlab中,常用的求解线性规划问题的函数是linprog。linprog可以解决标准形式的线性规划问题,即最小化一个线性目标函数,受到一组线性不等式约束和等式约束条件的限制。其常见用法如下:

      [x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub);

      参数解释:

      • f:目标函数系数。

      • A, b:不等式约束,形式为A * x <= b。

      • Aeq, beq:等式约束,形式为Aeq * x = beq。

      • lb, ub:变量的上下界。

      • x:最优解。

      • fval:目标函数在最优解处的值。

      • exitflag:求解器的退出状态。

      • output:包含更多求解信息的结构体。

      1.2 投资的收益和风险

      线性规划也常用于解决经济和金融领域的投资问题。投资中的收益和风险是两个核心因素,需要在一定约束条件下权衡它们的关系。比如,在资金有限的情况下,如何通过合理配置投资组合以最大化收益的同时尽可能降低风险,是一个典型的优化问题。通过线性规划,投资者可以找到最优的投资分配方案。

      在实际投资中,线性规划可以帮助解决以下问题:

      • 资产配置:如何在多个资产之间进行资金分配,以最大化收益或最小化风险。

      • 风险控制:在收益预期不变的情况下,如何最小化投资组合的风险。

      • 多目标优化:在兼顾收益和风险的同时,还要考虑流动性等其他目标。

      项目 描述
      投资目标 最大化收益、最小化风险
      约束条件 资金有限、市场风险等
      方法 线性规划模型
      Matlab代码示例

      以下是一个简单的投资组合优化的例子,使用Matlab进行求解:

      % 定义目标函数(收益最大化,取负表示最小化)
      f = [-0.12; -0.10; -0.14];  % 三种投资方式的年化收益率
      
      % 定义约束条件
      A = [1, 1, 1; 0.1, 0.2, 0.15];  % 总资金约束,风险约束
      b = [1; 0.18];  % 资金总量为1,风险控制在0.18以内
      
      % 定义变量的边界
      lb = [0; 0; 0];  % 变量下界
      ub = [1; 1; 1];  % 变量上界
      
      % 使用linprog函数求解线性规划问题
      [x, fval, exitflag] = linprog(f, A, b, [], [], lb, ub);
      
      % 输出结果
      if exitflag == 1
          fprintf('最优投资组合:x1 = %.2f, x2 = %.2f, x3 = %.2f\n', x(1), x(2), x(3));
          fprintf('最大化收益:%.2f\n', -fval);
      else
          disp('未找到最优解');
      end

      这个例子中,我们假设有三种投资方式,分别具有不同的年化收益率。我们希望在资金总量为1的情况下,控制风险在一定范围内,并且找到最大化收益的投资组合。

      在投资组合优化中,线性规划的优势在于其计算效率高,尤其适合处理具有明确线性关系的投资问题。当投资者需要快速制定决策时,线性规划是一种非常有效的方法。

      习题 1

      在第一章结束后,提供了相关的习题以帮助读者理解和掌握线性规划的基础知识。习题1主要涉及一些简单的线性规划模型建立和求解,通过练习,读者可以熟练掌握线性规划问题的建模步骤,并加深对其应用的理解。

      以下是一些习题示例:

      1. 生产计划问题:某工厂生产两种产品A和B,单位利润分别为5元和8元。已知每天最多可以生产A和B的数量之和不超过100个,且B的数量不超过A的两倍,原材料的供应量限制每天最多生产150个产品。请建立一个线性规划模型,求使工厂利润最大化的生产方案。

      2. 物流运输问题:某公司需要将货物从3个工厂运送到4个销售点,已知每个工厂的生产能力和每个销售点的需求量,以及工厂到销售点之间的运输成本。请建立一个线性规划模型,求使运输总成本最小的运输方案。

      3. 资源分配问题:某项目需要分配有限的预算、时间和人力资源,以完成若干个子任务。每个子任务有不同的资源需求和优先级。请建立一个线性规划模型,优化资源分配,使得项目的总收益最大化。

      通过这些习题,读者可以深入理解线性规划在不同应用场景中的建模和求解方法。

      总结

      第一章为线性规划奠定了基础,帮助读者理解线性规划问题的构建和求解方法。线性规划的核心在于找到最优解,使得目标函数在给定约束条件下达到最优。通过实际应用中的案例,线性规划展示了其在资源优化、收益最大化等方面的巨大潜力。在实际应用中,线性规划不仅帮助企业在生产和物流方面做出最佳决策,也在金融投资、资源管理等多个领域发挥着重要作用。接下来的章节将继续探讨数学规划的其他方面,包括整数规划和非线性规划等,这些内容将进一步扩展读者对优化问题的理解和解决方案的选择能力。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://weidonglang.blog.csdn.net/article/details/142773484,作者:小魏冬琅,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:数学建模算法与应用 第3章 非线性规划及其求解方法

      下一篇:探索经典算法:贪心、分治、动态规划等

      相关文章

      2025-03-26 09:08:50

      数学建模之线性规划篇

      线性规划(Linear Programming,简称LP)是一种数学优化技术,线性规划作为运筹学的一个重要分支,专门研究在给定一组线性约束条件下,如何找到一个最优的决策,使得目标函数取得最大或最小值。

      2025-03-26 09:08:50
      变量 , 机器
      2024-11-26 09:44:35

      线性规划及其MATLAB实现

      线性规划(Linear Programming, LP)是优化理论中一个非常基础且应用广泛的分支。其基本思想是通过优化线性目标函数,在满足一组线性约束条件的前提下,找到决策变量的最优解。

      2024-11-26 09:44:35
      MATLAB
      2024-11-25 09:16:49

      MATLAB中的线性规划与非线性规划

      在现代科学计算和工程应用中,优化问题无处不在。优化问题通常可以分为线性规划(Linear Programming, LP)和非线性规划(Nonlinear Programming, NLP)。MATLAB作为一个强大的计算工具,提供了丰富的函数和工具箱来处理各种类型的优化问题。

      2024-11-25 09:16:49
      2024-11-08 08:55:53

      随笔2优化算法

      优化算法 是数学建模中非常重要的工具,用于在给定的约束条件下找到某个目标函数的最优解(最大化或最小化)。在实际问题中,优化算法被广泛应用于资源分配、生产计划、路线规划、参数调优等场景。MATLAB 提供了强大的优化工具箱和函数,支持各种优化算法的实现。

      2024-11-08 08:55:53
      MATLAB , 函数
      2023-02-15 08:38:56

      leetcode-dp-309

      不会,我可以学;落后,我可以追赶;跌倒,我可以站起来!

      2023-02-15 08:38:56
      动态规划 , 数组
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5244772

      查看更多

      最新文章

      随笔2优化算法

      2024-11-08 08:55:53

      查看更多

      热门文章

      随笔2优化算法

      2024-11-08 08:55:53

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      随笔2优化算法

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号