爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力

      首页 知识中心 大数据 文章详情页

      当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力

      2024-10-29 09:41:48 阅读次数:28

      变量

      传统的解决线性规划问题的方法是图形法、代数法求解,但是图形法解题有极大的局限性,因为一旦变量超过3个,基本上就无法通过图形解决,而代数法虽然可以解题,但对于复杂的问题可能效果较差甚至无法求解!
      相比图形法和代数法,单纯形法解决线性规划问题具有以下优势:

      1. 理论基础强:单纯形法是基于线性规划的基本理论,通过系统的迭代过程逐步逼近最优解。它是一种可行的、确定性的算法,能够找到问题的最优解或者确定问题是无界或无解的。
      2. 高效性:在实践中,单纯形法通常能够在合理的时间内找到线性规划问题的最优解。尤其对于具有稀疏性质的问题,单纯形法的性能更为出色。此外,单纯形法的计算复杂度与问题规模的增长呈多项式关系。
      3. 灵活性:单纯形法适用于各种类型的线性规划问题,包括有约束的和无约束的问题。它可以处理多目标函数、等式约束、不等式约束、非线性约束等多种情况。
      4. 可以进行优化:单纯形法可以通过一些优化策略来提高算法的效率,例如早期停止条件、对偶单纯形法等。这些优化措施可以在实际应用中进一步加速算法的执行。
      5. 可解释性强:单纯形法的迭代过程很容易理解和解释。每个迭代步骤都代表着一种改进,可以直观地解释为什么选择某个变量作为进基变量或出基变量,从而得到更优解。

      尽管单纯形法具有以上优势,但对于大规模问题或非常稀疏的问题,单纯形法可能会遇到性能瓶颈。在这种情况下,可以考虑使用其他更高效的线性规划算法,例如内点法、启发式算法或者列生成法等。
      具体使用单纯形法解题的步骤如下所示:

      1. 化一般型为标准型,求初始基本可信解,建立初始单纯形表;
      2. 求检验数并判断,若已得到最优解,结束计算;否则转入下一步;
      3. 进行基变换,构建新的单纯形表进行迭代;
      4. 重复步骤二、三,直到得出最优解、重复解或无最优解等。

      1.化标准型

      我们常见的线性规划模型的一般型为:
      目标函数: m a x ( m i n ) Z = ∑ j = 1 n c j x j 约束条件: { ∑ j = 1 n a i j x j ≥ ( ⩽ ) b i , i = 1 , 2 , ⋯   , m x j ≥ 0 , j = 1 , 2 , ⋯   , n \begin{aligned} 目标函数:& max(min) Z=\sum_{j=1}^{n}c_{j}x_{j} \\ 约束条件:& \left\{\begin{matrix} \sum_{j=1}^{n}a_{ij}x_{j} \geq (\leqslant )b_{i} ,i=1,2,\cdots ,m\\ \\ x_{j}\geq 0,j=1,2,\cdots ,n \end{matrix}\right. \end{aligned} 目标函数:约束条件:​max(min)Z=j=1∑n​cj​xj​⎩ ⎨ ⎧​∑j=1n​aij​xj​≥(⩽)bi​,i=1,2,⋯,mxj​≥0,j=1,2,⋯,n​​
      单纯形法是一种求解线性规划问题的常用方法,其第一步是将线性规划问题转化为标准型,主要是为了方便后续的计算和迭代。
      将线性规划问题转化为标准型的目的有以下几个方面:

      1. 约束条件的统一表示:标准型可以将线性规划问题的约束条件统一表示为等式形式,即将不等式约束和非负约束都表示为等式约束。这样可以简化计算过程和算法的设计。
      2. 约束条件的非负性:标准型要求所有变量的取值都非负,这样可以确保问题的可行解存在。通过引入松弛变量或人工变量,将不等式约束转化为等式约束,并引入非负约束,确保问题的可行性。
      3. 目标函数的最大化:标准型要求将目标函数转化为最大化形式。对于最小化问题,可以通过将目标函数乘以-1来转化为最大化问题,并利用单纯形法求解。
        通过化为标准型,可以将线性规划问题转化为一个更加结构化和规范化的形式,方便应用单纯形法进行迭代计算。标准型的形式更加适合使用单纯形表格来表示和计算,使得单纯形法的步骤更加清晰和易于理解。
        需要注意的是,并非所有的线性规划问题都能够直接转化为标准型,有些问题需要经过一些额外的转化步骤才能达到标准型的形式。但是,一旦将问题转化为标准型,就可以直接应用单纯形法进行求解。
        具体线性规划模型的标准型为:
        目标函数: m a x Z = ∑ j = 1 n c j x j 约束条件: { ∑ j = 1 n a i j x j = b i , i = 1 , 2 , ⋯   , m x j ≥ 0 , j = 1 , 2 , ⋯   , n \begin{aligned} 目标函数:& maxZ=\sum_{j=1}^{n}c_{j}x_{j} \\ 约束条件:& \left\{\begin{matrix} \sum_{j=1}^{n}a_{ij}x_{j} =b_{i} ,i=1,2,\cdots ,m\\ \\ x_{j}\geq 0,j=1,2,\cdots ,n \end{matrix}\right. \end{aligned} 目标函数:约束条件:​maxZ=j=1∑n​cj​xj​⎩ ⎨ ⎧​∑j=1n​aij​xj​=bi​,i=1,2,⋯,mxj​≥0,j=1,2,⋯,n​​
        标准型的要求主要为:
        (1)目标函数为求最大值
        (2)约束条件均为等式方程
        (3)变量 x j x_{j} xj​为非负
        (4)常数 b i b_{i} bi​都大于等于零
        下面引入一个简单的例子并将其化为标准型:
        其线性规划问题的一般型为:
        m a x   z = 6 x 1 − 2 x 2 + x 3 { 2 x 1 − x 2 + 2 x 3 ⩽ 2 x 1 + 4 x 3 ⩽ 4 x 1 , x 2 , x 3 ⩾ 0 \begin{aligned} max \ z=6x_{1}-2x_{2}+x_{3} \\ \left\{\begin{matrix} 2x_{1}-x_{2}+2x_{3}\leqslant 2\\ x_{1}+4x_{3}\leqslant 4\\ x_{1},x_{2},x_{3}\geqslant 0 \end{matrix}\right. \end{aligned} max z=6x1​−2x2​+x3​⎩ ⎨ ⎧​2x1​−x2​+2x3​⩽2x1​+4x3​⩽4x1​,x2​,x3​⩾0​​
        将其转换为标准型为:
        m a x   z = 6 x 1 − 2 x 2 + x 3 + 0 x 4 + 0 x 5 { 2 x 1 − 1 x 2 + 2 x 3 + 1 x 4 + 0 x 5 = 2 1 x 1 + 0 x 2 + 4 x 3 + 0 x 4 + 1 x 5 = 4 x 1 , x 2 , x 3 , x 4 , x 5 ≥ 0 \begin{aligned} max \ z=6x_{1}-2x_{2}+x_{3}+0x_{4}+0x_{5}\\ \left\{\begin{matrix} 2x_{1}-1x_{2}+2x_{3}+1x_{4}+0x_{5}=2\\ 1x_{1}+0x_{2}+4x_{3}+0x_{4}+1x_{5}=4\\ x_{1},x_{2},x_{3},x_{4},x_{5}\geq 0 \end{matrix}\right. \end{aligned} max z=6x1​−2x2​+x3​+0x4​+0x5​⎩ ⎨ ⎧​2x1​−1x2​+2x3​+1x4​+0x5​=21x1​+0x2​+4x3​+0x4​+1x5​=4x1​,x2​,x3​,x4​,x5​≥0​​

      2.求检验数并判断最优解

      在单纯形法中,一旦将线性规划问题转化为标准型,可以通过以下步骤求解检验数,并判断是否达到最优解:

      1. 制作初始单纯形表格:根据标准型的形式,构造初始单纯形表格,包括目标函数的系数、约束条件的系数矩阵、右侧常数项等。
      2. 计算检验数:在初始单纯形表格中,计算每个变量的检验数。检验数表示在目标函数中增加或减少一个单位变量的值时,目标函数值的变化。检验数的计算公式为:检验数 = 目标函数系数 - 系数矩阵中对应列的系数与目标函数系数的乘积。
      3. 判断是否达到最优解:若所有的检验数都为非负数,则当前解为最优解。因为如果存在负的检验数,将会导致目标函数值继续改善,因此需要进行下一步的迭代。
        具体初始单纯形表如下所示:
        当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力
        注意,这里对参数进行解释: c k c_{k} ck​表示各个变量的价值系数,这里可以从目标函数 m a x   z = 6 x 1 − 2 x 2 + x 3 + 0 x 4 + 0 x 5 max \ z=6x_{1}-2x_{2}+x_{3}+0x_{4}+0x_{5} max z=6x1​−2x2​+x3​+0x4​+0x5​可以看出各个变量( x 1 、 x 2 、 x 3 、 x 4 、 x 5 x_{1}、x_{2}、x_{3}、x_{4}、x_{5} x1​、x2​、x3​、x4​、x5​)下面的数值,我们只需要看约束条件即可。
        { 2 x 1 − 1 x 2 + 2 x 3 + 1 x 4 + 0 x 5 = 2 1 x 1 + 0 x 2 + 4 x 3 + 0 x 4 + 1 x 5 = 4 \begin{aligned} \left\{\begin{matrix} 2x_{1}-1x_{2}+2x_{3}+1x_{4}+0x_{5}=2\\ 1x_{1}+0x_{2}+4x_{3}+0x_{4}+1x_{5}=4\\ \end{matrix}\right. \end{aligned} {2x1​−1x2​+2x3​+1x4​+0x5​=21x1​+0x2​+4x3​+0x4​+1x5​=4​​
        X B X_{B} XB​代表基变量,具体基变量的找法,我们只需要在系数矩阵中找到对应的单位矩阵,单位矩阵所对应的变量即为基变量,因此,从初始单纯形表可以看出, x 4 、 x 5 x_{4}、x_{5} x4​、x5​即为基变量。
        c B c_{B} cB​代表右侧基变量所对应的价值系数,初始单纯形表的基变量对应的价值系数分别是0、0
        b b b这一列称之为资源限量,填写的时候,只需要看系数矩阵中右侧的数字即可
        求基本可行解时,只需要设置全部非基变量为0,即令 x 1 、 x 2 、 x 3 = 0 x{1}、x{2}、x_{3}=0 x1、x2、x3​=0,这样可以求出基变量 x 4 = 2 , x 5 = 4 x_{4}=2,x_{5}=4 x4​=2,x5​=4,所以基本可行解为 ( 0 , 0 , 0 , 2 , 4 ) T (0,0,0,2,4)^T (0,0,0,2,4)T
        接下来,我们需要通过计算检验数来判断该解是否为最优解,即分别计算 ( x 1 、 x 2 、 x 3 、 x 4 、 x 5 ) (x_{1}、x_{2}、x_{3}、x_{4}、x_{5}) (x1​、x2​、x3​、x4​、x5​)所对应的检验数 σ j \sigma_{j} σj​,其计算方式为 c j − c B x j c_{j}-c_{B}x_{j} cj​−cB​xj​
        若当前计算的所有 σ j \sigma_{j} σj​都小于等于0,即表示当前基础可行解为最优解,否则还需要进行基变换来进一步求得最优解!

      3.基变换

      基变换的作用就会帮我们找到下一个可行解,简单来说就是用当前一个非基变量来替换基变量,也就是让非基变量入基,让基变量出基。
      在确定哪个非基变量入基的时候,我们只需要看检验数,当前最大的检验数对应的变量,就是需要入基的非基变量,当前是 x 1 x_{1} x1​,它对应的检验数为6,是当前所有检验数的最大值。
      接下来就需要确定出基变量,那么首先就需要计算 θ \theta θ,其计算方法就是b这一列和确定入基 x 1 x_{1} x1​这一列相除得到,即为 ( 1 , 4 ) T (1,4)^T (1,4)T,计算好 θ \theta θ后,我们只需要找 θ \theta θ值中的最小值,其最小值对应的变量 x 4 x_{4} x4​就是所对应的出基变量。
      紧接着就需要把入基变量 x 1 x_{1} x1​和出基变量 x 4 x_{4} x4​中相交的数字经过行列运算变换为1,其对应的同列元素全部变换为0,计算完毕后就对应着下一个单纯形表。
      具体下一个单纯形表如下所示:
      当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力
      这里需要注意,你可能看到 θ \theta θ对对应的第一个数填的是-,那是因为当前入基 x 2 x_{2} x2​对应的数字为负数,因此不需要计算。
      由此可以看出,并不是所有的检验数都为小于等于零,因此,当前的基础可行解仍然不是最优解,所以还需要进一步进行基变换,下面就不对基变换的过程进行详解,仅仅展示最优求得最优解所对应的单纯形表。
      当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力
      至此,从图表中可以看出,全部变量对应的检验数都小于等于0,因此,此时多对应的解为最优解,最优解为 ( 4 , 6 , 0 , 0 , 0 ) T (4,6,0,0,0)^T (4,6,0,0,0)T

      4.结果判定方法

      具体解的判定方法如下所示:
      当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://lglxv587.blog.csdn.net/article/details/134088162,作者:散一世繁华,颠半世琉璃,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:探索经典算法:贪心、分治、动态规划等

      下一篇:排序算法(5/6 改)

      相关文章

      2025-05-14 10:07:38

      C++ 11新特性之auto和decltype

      在C++ 11标准中,引入了两大关键类型推导机制,即:auto关键字和decltype表达式。这两个特性不仅极大地简化了代码编写,提升了可读性,还为开发者提供了更加灵活、直观的类型声明方式。

      2025-05-14 10:07:38
      auto , 函数 , 变量 , 类型 , 表达式
      2025-05-14 10:07:38

      30天拿下Rust之所有权

      在编程语言的世界中,Rust凭借其独特的所有权机制脱颖而出,为开发者提供了一种新颖而强大的工具来防止内存错误。这一特性不仅确保了代码的安全性,还极大地提升了程序的性能。

      2025-05-14 10:07:38
      data , Rust , 内存 , 函数 , 变量 , 数据
      2025-05-13 09:53:23

      Java静态变量在静态方法内部无法改变值

      在Java中,静态变量(也称为类变量)属于类本身,而不是类的任何特定实例。它们可以在没有创建类的实例的情况下访问和修改。如果我们发现在静态方法内部无法改变静态变量的值,这通常是因为我们的代码中有一些逻辑错误或误解。

      2025-05-13 09:53:23
      Java , 变量 , 实例 , 类名 , 访问 , 静态 , 静态方法
      2025-05-13 09:53:13

      计算机萌新的成长历程18——指针

      计算机要存储数据的话有以下几种途径,按访问速度由快到慢来排列分别是:寄存器>高速缓存>内存>硬盘。它们的存储空间大小是依次增大的,寄存器的存储空间大小最小,硬盘存储空间大小最大。

      2025-05-13 09:53:13
      内存 , 变量 , 地址 , 寄存器 , 指针
      2025-05-13 09:49:27

      全局变量_文件体系

      全局变量_文件体系

      2025-05-13 09:49:27
      bash , bashrc , profile , 变量 , 实践 , 文件
      2025-05-13 09:49:27

      变量基础_变量定义

      变量基础_变量定义

      2025-05-13 09:49:27
      变量 , 定义 , 示例 , 移除 , 解析 , 语法
      2025-05-13 09:49:27

      变量基础_变量场景

      变量基础_变量场景

      2025-05-13 09:49:27
      变量 , 场景 , 存储 , 学习 , 数据 , 编程语言
      2025-05-12 08:40:18

      Linux+Docer 容器化部署之 Shell 语法入门篇 【Shell变量】

      Linux+Docer 容器化部署之 Shell 语法入门篇 【Shell变量】

      2025-05-12 08:40:18
      Linux , 变量
      2025-05-07 09:08:23

      C语言的32个关键字

      C语言的32个关键字

      2025-05-07 09:08:23
      gt , 修饰 , 关键字 , 变量 , 循环
      2025-05-07 09:08:16

      UDP协议传输过程

      UDP协议传输过程

      2025-05-07 09:08:16
      函数 , 变量 , 接字
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5245802

      查看更多

      最新文章

      javascript数据类型变量声明

      2024-11-28 08:59:52

      tensorflow入门到精通——基本知识入门

      2024-11-06 07:14:42

      查看更多

      热门文章

      tensorflow入门到精通——基本知识入门

      2024-11-06 07:14:42

      javascript数据类型变量声明

      2024-11-28 08:59:52

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      javascript数据类型变量声明

      tensorflow入门到精通——基本知识入门

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号