searchusermenu
  • 发布文章
  • 消息中心
点赞
收藏
评论
分享
原创

天翼云 ClickHouse 性能测试方法

2025-06-20 03:26:23
8
0

前言

本文旨在介绍如何利用 ClickHouse官网 Star Schema数据集对天翼云数据仓库 ClickHouse进行性能测试,并提供数据导入及性能测试的参考方案。

准备工作

购买实例

请先购买天翼云数据仓库 ClickHouse 实例。您可以选择计算增强型或内存优化型。

准备测试机器

准备一台能够访问天翼云数据仓库 ClickHouse 服务的 Linux 机器,并在该机器上安装 ClickHouse 客户端工具。测试机器至少需要 1.5TB 的存储空间,并确保能够顺利访问天翼云数据仓库 ClickHouse 服务。有关 ClickHouse 客户端工具的安装,请参考相应的安装文档。

在购买实例后,您需要在控制台中调整以下参数:

参数名称 具体文件 作用 建议值
max_threads users.xml 单个查询允许使用的线程数 CPU 核数
max_insert_threads users.xml 单次写入允许使用的线程数 CPU 核数
max_memory_usage users.xml 单次查询允许使用的最大内存 总内存数(10GB)
background_pool_size users.xml MergeTree 引擎后台任务线程池大小 CPU 核数 * 2
max_thread_pool_size config.xml 全局线程池最大分配线程数量 20000
max_open_files config.xml 允许进程打开的最大文件句柄数 1000000
mark_cache_size config.xml mark 文件缓存大小 10737418240

具体参数的调整请参考相关配置文档。注意:调整完成后,请重启集群。

测试步骤

确认软件版本

使用 ClickHouse 客户端访问天翼云数据仓库 ClickHouse 服务,以查看软件版本:

clickhouse client --host $HOST --port $PORT -q "select version()"

请确保软件版本高于 22.8。

准备数据生成工具

git clone git@github.com:vadimtk/ssb-dbgen.git
cd ssb-dbgen
make

生成测试数据

使用 ssb-dbgen 工具生成测试数据。可以选择两种规模的数据,参数 -s 100 生成约 6 亿行数据,-s 1000 生成约 60 亿行数据。建议使用:

# 生成约60亿行数据
./dbgen -s 1000 -T c  # 生成客户表数据
./dbgen -s 1000 -T l  # 生成订单行数据
./dbgen -s 1000 -T p  # 生成产品表数据
./dbgen -s 1000 -T s  # 生成供应商表数据

创建数据库表

在天翼云数据仓库 ClickHouse 控制台上获取服务入口信息,记录访问 IP 和服务端口为 HOST 和 PORT。使用 ClickHouse 客户端工具连接天翼云数据仓库 ClickHouse 服务,执行如下 SQL 创建所需的表:

CREATE TABLE customer
(
        C_CUSTKEY       UInt32,
        C_NAME          String,
        C_ADDRESS       String,
        C_CITY          LowCardinality(String),
        C_NATION        LowCardinality(String),
        C_REGION        LowCardinality(String),
        C_PHONE         String,
        C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE lineorder
(
    LO_ORDERKEY             UInt32,
    LO_LINENUMBER           UInt8,
    LO_CUSTKEY              UInt32,
    LO_PARTKEY              UInt32,
    LO_SUPPKEY              UInt32,
    LO_ORDERDATE            Date,
    LO_ORDERPRIORITY        LowCardinality(String),
    LO_SHIPPRIORITY         UInt8,
    LO_QUANTITY             UInt8,
    LO_EXTENDEDPRICE        UInt32,
    LO_ORDTOTALPRICE        UInt32,
    LO_DISCOUNT             UInt8,
    LO_REVENUE              UInt32,
    LO_SUPPLYCOST           UInt32,
    LO_TAX                  UInt8,
    LO_COMMITDATE           Date,
    LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE part
(
        P_PARTKEY       UInt32,
        P_NAME          String,
        P_MFGR          LowCardinality(String),
        P_CATEGORY      LowCardinality(String),
        P_BRAND         LowCardinality(String),
        P_COLOR         LowCardinality(String),
        P_TYPE          LowCardinality(String),
        P_SIZE          UInt8,
        P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;

CREATE TABLE supplier
(
        S_SUPPKEY       UInt32,
        S_NAME          String,
        S_ADDRESS       String,
        S_CITY          LowCardinality(String),
        S_NATION        LowCardinality(String),
        S_REGION        LowCardinality(String),
        S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

导入测试数据

进行数据导入,首先导入基础表数据:

clickhouse client --host $HOST --port $PORT --query "INSERT INTO customer FORMAT CSV" < customer.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO part FORMAT CSV" < part.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl

然后根据基础表数据生成宽表数据。注意您已调整了 max_memory_usagemax_insert_threads 参数。

CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECT
    l.LO_ORDERKEY AS LO_ORDERKEY,
    l.LO_LINENUMBER AS LO_LINENUMBER,
    l.LO_CUSTKEY AS LO_CUSTKEY,
    l.LO_PARTKEY AS LO_PARTKEY,
    l.LO_SUPPKEY AS LO_SUPPKEY,
    l.LO_ORDERDATE AS LO_ORDERDATE,
    l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,
    l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,
    l.LO_QUANTITY AS LO_QUANTITY,
    l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,
    l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,
    l.LO_DISCOUNT AS LO_DISCOUNT,
    l.LO_REVENUE AS LO_REVENUE,
    l.LO_SUPPLYCOST AS LO_SUPPLYCOST,
    l.LO_TAX AS LO_TAX,
    l.LO_COMMITDATE AS LO_COMMITDATE,
    l.LO_SHIPMODE AS LO_SHIPMODE,
    c.C_NAME AS C_NAME,
    c.C_ADDRESS AS C_ADDRESS,
    c.C_CITY AS C_CITY,
    c.C_NATION AS C_NATION,
    c.C_REGION AS C_REGION,
    c.C_PHONE AS C_PHONE,
    c.C_MKTSEGMENT AS C_MKTSEGMENT,
    s.S_NAME AS S_NAME,
    s.S_ADDRESS AS S_ADDRESS,
    s.S_CITY AS S_CITY,
    s.S_NATION AS S_NATION,
    s.S_REGION AS S_REGION,
    s.S_PHONE AS S_PHONE,
    p.P_NAME AS P_NAME,
    p.P_MFGR AS P_MFGR,
    p.P_CATEGORY AS P_CATEGORY,
    p.P_BRAND AS P_BRAND,
    p.P_COLOR AS P_COLOR,
    p.P_TYPE AS P_TYPE,
    p.P_SIZE AS P_SIZE,
    p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;

优化查询(可选)

天翼云数据仓库 ClickHouse 提供预计算能力以加快执行速度。可以通过 PROJECTION 来加速查询。执行以下 SQL 以添加不同的投影:

ALTER TABLE lineorder_flat ADD PROJECTION p1 (
    SELECT 
        toYear(LO_ORDERDATE) AS year,
        sum(LO_REVENUE)
    GROUP BY 
        year,
        P_BRAND,
        P_CATEGORY,
        S_REGION
);

-- 继续添加其他投影...

执行完投影后,需要对现有数据进行处理,使投影在存量数据上生效:

ALTER TABLE lineorder_flat MATERIALIZE PROJECTION p1;
-- 继续对其他投影进行物化...

注意: 该步骤是可选的,使用优化后,性能提升非常明显。

执行测试 SQL 并统计执行时间

在测试阶段,您可以执行以下查询,并记录执行时间:

  • Q1.1
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue
FROM lineorder_flat
WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;
  • Q2.1
SELECT
    sum(LO_REVENUE),
    toYear(LO_ORDERDATE) AS year,
    P_BRAND
FROM lineorder_flat
WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA'
GROUP BY
    year,
    P_BRAND
ORDER BY
    year,
    P_BRAND;
  • Q3.1
SELECT
    C_NATION,
    S_NATION,
    toYear(LO_ORDERDATE) AS year,
    sum(LO_REVENUE) AS revenue
FROM lineorder_flat
WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997
GROUP BY
    C_NATION,
    S_NATION,
    year
ORDER BY
    year ASC,
    revenue DESC;

总结

性能测试是天翼云数据仓库 ClickHouse 业务接入前的重要步骤,对于性能和资源的评估具有重要意义。进行性能对比测试时,请注意以下几点:

  1. 调整天翼云数据仓库 ClickHouse 的关键参数,以最大限度发挥性能。
  2. 确保资源的一致性,例如,天翼云数据仓库 ClickHouse 在某些情况下仅使用一半的节点进行计算,可能导致性能数据不占优势。

通过以上步骤和注意事项,您可以有效地进行性能测试并获得优化的结果。

0条评论
0 / 1000
杨****涛
3文章数
0粉丝数
杨****涛
3 文章 | 0 粉丝
杨****涛
3文章数
0粉丝数
杨****涛
3 文章 | 0 粉丝
原创

天翼云 ClickHouse 性能测试方法

2025-06-20 03:26:23
8
0

前言

本文旨在介绍如何利用 ClickHouse官网 Star Schema数据集对天翼云数据仓库 ClickHouse进行性能测试,并提供数据导入及性能测试的参考方案。

准备工作

购买实例

请先购买天翼云数据仓库 ClickHouse 实例。您可以选择计算增强型或内存优化型。

准备测试机器

准备一台能够访问天翼云数据仓库 ClickHouse 服务的 Linux 机器,并在该机器上安装 ClickHouse 客户端工具。测试机器至少需要 1.5TB 的存储空间,并确保能够顺利访问天翼云数据仓库 ClickHouse 服务。有关 ClickHouse 客户端工具的安装,请参考相应的安装文档。

在购买实例后,您需要在控制台中调整以下参数:

参数名称 具体文件 作用 建议值
max_threads users.xml 单个查询允许使用的线程数 CPU 核数
max_insert_threads users.xml 单次写入允许使用的线程数 CPU 核数
max_memory_usage users.xml 单次查询允许使用的最大内存 总内存数(10GB)
background_pool_size users.xml MergeTree 引擎后台任务线程池大小 CPU 核数 * 2
max_thread_pool_size config.xml 全局线程池最大分配线程数量 20000
max_open_files config.xml 允许进程打开的最大文件句柄数 1000000
mark_cache_size config.xml mark 文件缓存大小 10737418240

具体参数的调整请参考相关配置文档。注意:调整完成后,请重启集群。

测试步骤

确认软件版本

使用 ClickHouse 客户端访问天翼云数据仓库 ClickHouse 服务,以查看软件版本:

clickhouse client --host $HOST --port $PORT -q "select version()"

请确保软件版本高于 22.8。

准备数据生成工具

git clone git@github.com:vadimtk/ssb-dbgen.git
cd ssb-dbgen
make

生成测试数据

使用 ssb-dbgen 工具生成测试数据。可以选择两种规模的数据,参数 -s 100 生成约 6 亿行数据,-s 1000 生成约 60 亿行数据。建议使用:

# 生成约60亿行数据
./dbgen -s 1000 -T c  # 生成客户表数据
./dbgen -s 1000 -T l  # 生成订单行数据
./dbgen -s 1000 -T p  # 生成产品表数据
./dbgen -s 1000 -T s  # 生成供应商表数据

创建数据库表

在天翼云数据仓库 ClickHouse 控制台上获取服务入口信息,记录访问 IP 和服务端口为 HOST 和 PORT。使用 ClickHouse 客户端工具连接天翼云数据仓库 ClickHouse 服务,执行如下 SQL 创建所需的表:

CREATE TABLE customer
(
        C_CUSTKEY       UInt32,
        C_NAME          String,
        C_ADDRESS       String,
        C_CITY          LowCardinality(String),
        C_NATION        LowCardinality(String),
        C_REGION        LowCardinality(String),
        C_PHONE         String,
        C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE lineorder
(
    LO_ORDERKEY             UInt32,
    LO_LINENUMBER           UInt8,
    LO_CUSTKEY              UInt32,
    LO_PARTKEY              UInt32,
    LO_SUPPKEY              UInt32,
    LO_ORDERDATE            Date,
    LO_ORDERPRIORITY        LowCardinality(String),
    LO_SHIPPRIORITY         UInt8,
    LO_QUANTITY             UInt8,
    LO_EXTENDEDPRICE        UInt32,
    LO_ORDTOTALPRICE        UInt32,
    LO_DISCOUNT             UInt8,
    LO_REVENUE              UInt32,
    LO_SUPPLYCOST           UInt32,
    LO_TAX                  UInt8,
    LO_COMMITDATE           Date,
    LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE part
(
        P_PARTKEY       UInt32,
        P_NAME          String,
        P_MFGR          LowCardinality(String),
        P_CATEGORY      LowCardinality(String),
        P_BRAND         LowCardinality(String),
        P_COLOR         LowCardinality(String),
        P_TYPE          LowCardinality(String),
        P_SIZE          UInt8,
        P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;

CREATE TABLE supplier
(
        S_SUPPKEY       UInt32,
        S_NAME          String,
        S_ADDRESS       String,
        S_CITY          LowCardinality(String),
        S_NATION        LowCardinality(String),
        S_REGION        LowCardinality(String),
        S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

导入测试数据

进行数据导入,首先导入基础表数据:

clickhouse client --host $HOST --port $PORT --query "INSERT INTO customer FORMAT CSV" < customer.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO part FORMAT CSV" < part.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl

然后根据基础表数据生成宽表数据。注意您已调整了 max_memory_usagemax_insert_threads 参数。

CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECT
    l.LO_ORDERKEY AS LO_ORDERKEY,
    l.LO_LINENUMBER AS LO_LINENUMBER,
    l.LO_CUSTKEY AS LO_CUSTKEY,
    l.LO_PARTKEY AS LO_PARTKEY,
    l.LO_SUPPKEY AS LO_SUPPKEY,
    l.LO_ORDERDATE AS LO_ORDERDATE,
    l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,
    l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,
    l.LO_QUANTITY AS LO_QUANTITY,
    l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,
    l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,
    l.LO_DISCOUNT AS LO_DISCOUNT,
    l.LO_REVENUE AS LO_REVENUE,
    l.LO_SUPPLYCOST AS LO_SUPPLYCOST,
    l.LO_TAX AS LO_TAX,
    l.LO_COMMITDATE AS LO_COMMITDATE,
    l.LO_SHIPMODE AS LO_SHIPMODE,
    c.C_NAME AS C_NAME,
    c.C_ADDRESS AS C_ADDRESS,
    c.C_CITY AS C_CITY,
    c.C_NATION AS C_NATION,
    c.C_REGION AS C_REGION,
    c.C_PHONE AS C_PHONE,
    c.C_MKTSEGMENT AS C_MKTSEGMENT,
    s.S_NAME AS S_NAME,
    s.S_ADDRESS AS S_ADDRESS,
    s.S_CITY AS S_CITY,
    s.S_NATION AS S_NATION,
    s.S_REGION AS S_REGION,
    s.S_PHONE AS S_PHONE,
    p.P_NAME AS P_NAME,
    p.P_MFGR AS P_MFGR,
    p.P_CATEGORY AS P_CATEGORY,
    p.P_BRAND AS P_BRAND,
    p.P_COLOR AS P_COLOR,
    p.P_TYPE AS P_TYPE,
    p.P_SIZE AS P_SIZE,
    p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;

优化查询(可选)

天翼云数据仓库 ClickHouse 提供预计算能力以加快执行速度。可以通过 PROJECTION 来加速查询。执行以下 SQL 以添加不同的投影:

ALTER TABLE lineorder_flat ADD PROJECTION p1 (
    SELECT 
        toYear(LO_ORDERDATE) AS year,
        sum(LO_REVENUE)
    GROUP BY 
        year,
        P_BRAND,
        P_CATEGORY,
        S_REGION
);

-- 继续添加其他投影...

执行完投影后,需要对现有数据进行处理,使投影在存量数据上生效:

ALTER TABLE lineorder_flat MATERIALIZE PROJECTION p1;
-- 继续对其他投影进行物化...

注意: 该步骤是可选的,使用优化后,性能提升非常明显。

执行测试 SQL 并统计执行时间

在测试阶段,您可以执行以下查询,并记录执行时间:

  • Q1.1
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue
FROM lineorder_flat
WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;
  • Q2.1
SELECT
    sum(LO_REVENUE),
    toYear(LO_ORDERDATE) AS year,
    P_BRAND
FROM lineorder_flat
WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA'
GROUP BY
    year,
    P_BRAND
ORDER BY
    year,
    P_BRAND;
  • Q3.1
SELECT
    C_NATION,
    S_NATION,
    toYear(LO_ORDERDATE) AS year,
    sum(LO_REVENUE) AS revenue
FROM lineorder_flat
WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997
GROUP BY
    C_NATION,
    S_NATION,
    year
ORDER BY
    year ASC,
    revenue DESC;

总结

性能测试是天翼云数据仓库 ClickHouse 业务接入前的重要步骤,对于性能和资源的评估具有重要意义。进行性能对比测试时,请注意以下几点:

  1. 调整天翼云数据仓库 ClickHouse 的关键参数,以最大限度发挥性能。
  2. 确保资源的一致性,例如,天翼云数据仓库 ClickHouse 在某些情况下仅使用一半的节点进行计算,可能导致性能数据不占优势。

通过以上步骤和注意事项,您可以有效地进行性能测试并获得优化的结果。

文章来自个人专栏
文章 | 订阅
0条评论
0 / 1000
请输入你的评论
0
0