爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      非阻塞算法

      首页 知识中心 软件开发 文章详情页

      非阻塞算法

      2023-03-21 10:32:27 阅读次数:548

      数据结构,多线程同步

      在并发上下文中,非阻塞算法是一种允许线程在阻塞其他线程的情况下访问共享状态的算法。在绝大多数项目中,在算法中如果一个线程的挂起没有导致其它的线程挂起,我们就说这个算法是非阻塞的。

      为了更好的理解阻塞算法和非阻塞算法之间的区别,我会先讲解阻塞算法然后再讲解非阻塞算法。

      阻塞并发算法

      一个阻塞并发算法一般分下面两步:

      • 执行线程请求的操作
      • 阻塞线程直到可以安全地执行操作

      很多算法和并发数据结构都是阻塞的。例如,java.util.concurrent.BlockingQueue的不同实现都是阻塞数据结构。如果一个线程要往一个阻塞队列中插入一个元素,队列中没有足够的空间,执行插入操作的线程就会阻塞直到队列中有了可以存放插入元素的空间。

      下图演示了一个阻塞算法保证一个共享数据结构的行为:

      非阻塞算法

      非阻塞并发算法

      一个非阻塞并发算法一般包含下面两步:

      • 执行线程请求的操作
      • 通知请求线程操作不能被执行

      Java也包含几个非阻塞数据结构。AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference都是非阻塞数据结构的例子。

      下图演示了一个非阻塞算法保证一个共享数据结构的行为:

      非阻塞算法

      非阻塞算法 vs 阻塞算法

      阻塞算法和非阻塞算法的主要不同在于上面两部分描述的它们的行为的第二步。换句话说,它们之间的不同在于当请求操作不能够执行时阻塞算法和非阻塞算法会怎么做。

      阻塞算法会阻塞线程知道请求操作可以被执行。非阻塞算法会通知请求线程操作不能够被执行,并返回。

      一个使用了阻塞算法的线程可能会阻塞直到有可能去处理请求。通常,其它线程的动作使第一个线程执行请求的动作成为了可能。 如果,由于某些原因线程被阻塞在程序某处,因此不能让第一个线程的请求动作被执行,第一个线程会阻塞——可能一直阻塞或者直到其他线程执行完必要的动作。

      例如,如果一个线程产生往一个已经满了的阻塞队列里插入一个元素,这个线程就会阻塞,直到其他线程从这个阻塞队列中取走了一些元素。如果由于某些原因,从阻塞队列中取元素的线程假定被阻塞在了程序的某处,那么,尝试往阻塞队列中添加新元素的线程就会阻塞,要么一直阻塞下去,要么知道从阻塞队列中取元素的线程最终从阻塞队列中取走了一个元素。

      非阻塞并发数据结构

      在一个多线程系统中,线程间通常通过一些数据结构”交流“。例如可以是任何的数据结构,从变量到更高级的俄数据结构(队列,栈等)。为了确保正确,并发线程在访问这些数据结构的时候,这些数据结构必须由一些并发算法来保证。这些并发算法让这些数据结构成为 并发数据结构 。

      如果某个算法确保一个并发数据结构是阻塞的,它就被称为是一个 阻塞算法 。这个数据结构也被称为是一个 阻塞,并发数据结构 。

      如果某个算法确保一个并发数据结构是非阻塞的,它就被称为是一个 非阻塞算法 。这个数据结构也被称为是一个 非阻塞,并发数据结构 。

      每个并发数据结构被设计用来支持一个特定的通信方法。使用哪种并发数据结构取决于你的通信需要。在接下里的部分,我会引入一些非阻塞并发数据结构,并讲解它们各自的适用场景。通过这些并发数据结构工作原理的讲解应该能在非阻塞数据结构的设计和实现上一些启发。

      Volatile 变量

      Java中的 volatile变量是直接从主存中读取值的变量。当一个新的值赋给一个 volatile变量时,这个值总是会被立即写回到主存中去。这样就确保了,一个 volatile变量最新的值总是对跑在其他CPU上的线程可见。其他线程每次会从主存中读取变量的值,而不是比如线程所运行CPU的CPU缓存中。

      colatile变量是非阻塞的。修改一个 volatile变量的值是一耳光原子操作。它不能够被中断。不过,在一个 volatile变量上的一个 read-update-write 顺序的操作不是原子的。因此,下面的代码如果由多个线程执行可能导致 竞态条件 。

      volatile myVar = 0;
      ...
      int temp = myVar;
      temp++;
      myVar = temp;
      

      首先,myVar这个volatile变量的值被从主存中读出来赋给了 temp变量。然后,temp变量自增1。然后,temp变量的值又赋给了 myVar这个volatile变量这意味着它会被写回到主存中。

      如果两个线程执行这段代码,然后它们都读取 myVar的值,加1后,把它的值写回到主存。这样就存在 myVar仅被加1,而没有被加2的风险。

      你可能认为你不会写像上面这样的代码,但是在实践中上面的代码等同于如下的代码:

      myVar++;
      

      执行上面的代码时,myVar的值读到一个CPU寄存器或者一个本地CPU缓存中,myVar加1,然后这个CPU寄存器或者CPU缓存中的值被写回到主存中。

      单个写线程的情景

      在一些场景下,你仅有一个线程在向一个共享变量写,多个线程在读这个变量。当仅有一个线程在更新一个变量,不管有多少个线程在读这个变量,都不会发生竞态条件。因此,无论时候当仅有一个线程在写一个共享变量时,你可以把这个变量声明为 volatile。

      当多个线程在一个共享变量上执行一个 read-update-write 的顺序操作时才会发生竞态条件。如果你只有一个线程在执行一个 raed-update-write 的顺序操作,其他线程都在执行读操作,将不会发生竞态条件。

      下面是一个单个写线程的例子,它没有采取同步手段但任然是并发的。

      public class SingleWriterCounter{
          private volatile long count = 0;
      
          /**
           *Only one thread may ever call this method
           *or it will lead to race conditions
           */
           public void inc(){
               this.count++;
           }
      
           /**
            *Many reading threads may call this method
            *@return
            */
            public long count(){
                return this.count;
            }
      }
      

      多个线程访问同一个 Counter实例,只要仅有一个线程调用 inc()方法,这里,我不是说在某一时刻一个线程,我的意思是,仅有相同的,单个的线程被允许去调用 inc()>方法。多个线程可以调用 count()方法。这样的场景将不会发生任何竞态条件。

      下图,说明了线程是如何访问 count这个volatile变量的。

      非阻塞算法

      基于volatile变量更高级的数据结构

      使用多个 volatile变量去创建数据结构是可以的,构建出的数据结构中每一个 volatile变量仅被一个单个的线程写,被多个线程读。每个 volatile变量可能被一个不同的线程写(但仅有一个)。使用像这样的数据结构多个线程可以使用这些 volatile变量以一个非阻塞的方法彼此发送信息。

      下面是一个简单的例子:

      public class DoubleWriterCounter{
          private volatile long countA = 0;
          private volatile long countB = 0;
      
          /**
           *Only one (and the same from thereon) thread may ever call this method,
           *or it will lead to race conditions.
           */
           public void incA(){
               this.countA++;
           }
      
           /**
            *Only one (and the same from thereon) thread may ever call this method, 
            *or it will  lead to race conditions.
            */
            public void incB(){
                this.countB++;
            }
      
            /**
             *Many reading threads may call this method
             */
            public long countA(){
                return this.countA;
            }
      
           /**
            *Many reading threads may call this method
            */
            public long countB(){
                return this.countB;
            }
      }
      

      如你所见,DoubleWriterCoounter现在包含两个 volatile变量以及两对自增和读方法。在某一时刻,仅有一个单个的线程可以调用 inc(),仅有一个单个的线程可以访问 incB()。不过不同的线程可以同时调用 incA()和 incB()。countA()和 countB()可以被多个线程调用。这将不会引发竞态条件。

      DoubleWriterCoounter可以被用来比如线程间通信。countA和countB可以分别用来存储生产的任务数和消费的任务数。下图,展示了两个线程通过类似于上面的一个数据结构进行通信的。

      非阻塞算法

      聪明的读者应该已经意识到使用两个 SingleWriterCounter可以达到使用 DoubleWriterCoounter的效果。如果需要,你甚至可以使用多个线程和 SingleWriterCounter实例。

      使用CAS的乐观锁

      如果你确实需要多个线程区写同一个共享变量,
      volatile
      变量是不合适的。你将会需要一些类型的排它锁(悲观锁)访问这个变量。下面代码演示了使用Java中的同步块进行排他访问的。
      
      public class SynchronizedCounter{
          long count = 0;
      
          public void inc(){
              synchronized(this){
                  count++;
              }
          }
      
          public long count(){
              synchronized(this){
                  return this.count;
              }
          }
      }
      

      注意,,inc()和 count()方法都包含一个同步块。这也是我们像避免的东西——同步块和 wait()-notify 调用等。

      我们可以使用一种Java的原子变量来代替这两个同步块。在这个例子是 AtomicLong。下面是SynchronizedCounter类的AtomicLong实现版本。

      import java.util.concurrent.atomic.AtomicLong;
      
      public class AtomicLong{
          private AtomicLong count = new AtomicLong(0);
      
          public void inc(){
              boolean updated = false;
              while(!updated){
                  long prevCount = this.count.get();
                  updated = this.count.compareAndSet(prevCount, prevCount + 1);
              }
          }
      
          public long count(){
              return this.count.get();
          }
      }
      
      这个版本仅仅是上一个版本的线程安全版本。这一版我们感兴趣的是
      inc()
      方法的实现。
      inc()
      方法中不再含有一个同步块。而是被下面这些代码替代:
      
      boolean updated = false;
      while(!updated){
          long prevCount = this.count.get();
          updated = this.count.compareAndSet(prevCount, prevCount + 1);
      }
      

      上面这些代码并不是一个原子操作。也就是说,对于两个不同的线程去调用 inc()方法,然后执行 long prevCount = this.count.get()语句,因此获得了这个计数器的上一个count。但是,上面的代码并没有包含任何的竞态条件。

      秘密就在于 while循环里的第二行代码。compareAndSet()方法调用是一个原子操作。它用一个期望值和AtomicLong 内部的值去比较,如果这两个值相等,就把AtomicLong内部值替换为一个新值。compareAndSet()通常被CPU中的 compare-and-swap指令直接支持。因此,不需要去同步,也不需要去挂起线程。

      假设,这个 AtomicLong的内部值是20,。然后,两个线程去读这个值,都尝试调用 compareAndSet(20, 20 + 1)。尽管 compareAndSet()是一个原子操作,这个方法也会被这两个线程相继执行(某一个时刻只有一个)。

      第一个线程会使用期望值20(这个计数器的上一个值)与AtomicLong的内部值进行比较。由于两个值是相等的,AtomicLong会更新它的内部值至21(20 + 1 )。变量 updated被修改为true,while循环结束。

      现在,第二个线程调用 compareAndSet(20, 20 + 1)。由于AtomicLong的内部值不再是20,这个调用将不会成功。AtomicLong的值不会再被修改为21。变量,updated被修改为false,线程将会再次在while循环外自旋。这段时间,它会读到值21并企图把值更新为22。如果在此期间没有其它线程调用 inc()。第二次迭代将会成功更新AtomicLong的内部值到22。

      为什么称它为乐观锁

      上一部分展现的代码被称为 乐观锁 (optimistic locking)。乐观锁区别于传统的锁,有时也被称为 悲观锁 。传统的锁会使用同步块或其他类型的锁阻塞对临界区域的访问。一个同步块或锁可能会导致线程挂起。

      乐观锁允许所有的线程在不发生阻塞的情况下创建一份共享内存的拷贝。这些线程接下来可能会对它们的拷贝进行修改,并企图把它们修改后的版本写回到共享内存中。如果没有其它线程对共享内存做任何修改, CAS操作就允许线程将它的变化写回到共享内存中去。如果,另一个线程已经修改了共享内存,这个线程将不得不再次获得一个新的拷贝,在新的拷贝上做出修改,并尝试再次把它们写回到共享内存中去。

      称之为“乐观锁”的原因就是,线程获得它们想修改的数据的拷贝并做出修改,在乐观的假在此期间没有线程对共享内存做出修改的情况下。当这个乐观假设成立时,这个线程仅仅在无锁的情况下完成共享内存的更新。当这个假设不成立时,线程所做的工作就会被丢弃,但任然不使用锁。

      乐观锁使用于共享内存竞用不是非常高的情况。如果共享内存上的内容非常多,仅仅因为更新共享内存失败,就用浪费大量的CPU周期用在拷贝和修改上。但是,如果砸共享内存上有大量的内容,无论如何,你都要把你的代码设计的产生的争用更低。

      乐观锁是非阻塞的

      我们这里提到的乐观锁机制是非阻塞的。如果一个线程获得了一份共享内存的拷贝,当尝试修改时,发生了阻塞,其它线程去访问这块内存区域不会发生阻塞。

      对于一个传统的加锁/解锁模式,当一个线程持有一个锁时,其它所有的线程都会一直阻塞直到持有锁的线程再次释放掉这个锁。如果持有锁的这个线程被阻塞在某处,这个锁将很长一段时间不能被释放,甚至可能一直不能被释放。

      不可替换的数据结构

      简单的CAS乐观锁可以用于共享数据结果,这样一来,整个数据结构都可以通过一个单个的CAS操作被替换成为一个新的数据结构。尽管,使用一个修改后的拷贝来替换真个数据结构并不总是可行的。

      假设,这个共享数据结构是队列。每当线程尝试从向队列中插入或从队列中取出元素时,都必须拷贝这个队列然后在拷贝上做出期望的修改。我们可以通过使用一个 AtomicReference来达到同样的目的。拷贝引用,拷贝和修改队列,尝试替换在 AtomicReference中的引用让它指向新创建的队列。

      然而,一个大的数据结构可能会需要大量的内存和CPU周期来复制。这会使你的程序占用大量的内存和浪费大量的时间再拷贝操作上。这将会降低你的程序的性能,特别是这个数据结构的竞用非常高情况下。更进一步说,一个线程花费在拷贝和修改这个数据结构上的时间越长,其它线程在此期间修改这个数据结构的可能性就越大。如你所知,如果另一个线程修改了这个数据结构在它被拷贝后,其它所有的线程都不等不再次执行 拷贝-修改 操作。这将会增大性能影响和内存浪费,甚至更多。

      接下来的部分将会讲解一种实现非阻塞数据结构的方法,这种数据结构可以被并发修改,而不仅仅是拷贝和修改。

      共享预期的修改

      用来替换拷贝和修改整个数据结构,一个线程可以共享它们对共享数据结构预期的修改。一个线程向对修改某个数据结构的过程变成了下面这样:

      • 检查是否另一个线程已经提交了对这个数据结构提交了修改
      • 如果没有其他线程提交了一个预期的修改,创建一个预期的修改,然后向这个数据结构提交预期的修改
      • 执行对共享数据结构的修改
      • 移除对这个预期的修改的引用,向其它线程发送信号,告诉它们这个预期的修改已经被执行

      如你所见,第二步可以阻塞其他线程提交一个预期的修改。因此,第二步实际的工作是作为这个数据结构的一个锁。如果一个线程已经成功提交了一个预期的修改,其他线程就不可以再提交一个预期的修改直到第一个预期的修改执行完毕。

      如果一个线程提交了一个预期的修改,然后做一些其它的工作时发生阻塞,这时候,这个共享数据结构实际上是被锁住的。其它线程可以检测到它们不能够提交一个预期的修改,然后回去做一些其它的事情。很明显,我们需要解决这个问题。

      可完成的预期修改

      为了避免一个已经提交的预期修改可以锁住共享数据结构,一个已经提交的预期修改必须包含足够的信息让其他线程来完成这次修改。因此,如果一个提交了预期修改的线程从未完成这次修改,其他线程可以在它的支持下完成这次修改,保证这个共享数据结构对其他线程可用。

      下图说明了上面描述的非阻塞算法的蓝图:

      非阻塞算法

      修改必须被当做一个或多个CAS操作来执行。因此,如果两个线程尝试去完成同一个预期修改,仅有一个线程可以所有的CAS操作。一旦一条CAS操作完成后,再次企图完成这个CAS操作都不会“得逞”。

      A-B-A问题

      上面演示的算法可以称之为 A-B-A问题 。A-B-A问题指的是一个变量被从A修改到了B,然后又被修改回A的一种情景。其他线程对于这种情况却一无所知。

      如果线程A检查正在进行的数据更新,拷贝,被线程调度器挂起,一个线程B在此期可能可以访问这个共享数据结构。如果线程对这个数据结构执行了全部的更新,移除了它的预期修改,这样看起来,好像线程A自从拷贝了这个数据结构以来没有对它做任何的修改。然而,一个修改确实已经发生了。当线程A继续基于现在已经过期的数据拷贝执行它的更新时,这个数据修改已经被线程B的修改破坏。

      下图说明了上面提到的A-B-A问题:

      非阻塞算法

      A-B-A问题的解决方案

      A-B-A通常的解决方法就是不再仅仅替换指向一个预期修改对象的指针,而是指针结合一个计数器,然后使用一个单个的CAS操作来替换指针 + 计数器。这在支持指针的语言像C和C++中是可行的。因此,尽管当前修改指针被设置回指向 “不是正在进行的修改”(no ongoing modification),指针 + 计数器的计数器部分将会被自增,使修改对其它线程是可见的。

      在Java中,你不能将一个引用和一个计数器归并在一起形成一个单个的变量。不过Java提供了 AtomicStampedReference类,利用这个类可以使用一个CAS操作自动的替换一个引用和一个标记(stamp)。

      一个非阻塞算法模板

      下面的代码意在在如何实现非阻塞算法上一些启发。这个模板基于这篇教程所讲的东西。

      注意 :在非阻塞算法方面,我并不是一位专家,所以,下面的模板可能错误。不要基于我提供的模板实现自己的非阻塞算法。这个模板意在给你一个关于非阻塞算法大致是什么样子的一个idea。如果,你想实现自己的非阻塞算法,首先学习一些实际的工业水平的非阻塞算法的时间,在实践中学习更多关于非阻塞算法实现的知识。

      import java.util.concurrent.atomic.AtomicBoolean;
      import java.util.concurrent.atomic.AtomicStampedReference;
      
      public class NonblockingTemplate{
          public static class IntendedModification{
              public AtomicBoolean completed = new AtomicBoolean(false);
          }
      
          private AtomicStampedReference<IntendedModification> ongoinMod = new AtomicStampedReference<IntendedModification>(null, 0);
          //declare the state of the data structure here.
      
          public void modify(){
              while(!attemptModifyASR());
          }
      
      
          public boolean attemptModifyASR(){
              boolean modified = false;
      
              IntendedMOdification currentlyOngoingMod = ongoingMod.getReference();
              int stamp = ongoingMod.getStamp();
      
              if(currentlyOngoingMod == null){
                  //copy data structure - for use
                  //in intended modification
      
                  //prepare intended modification
                  IntendedModification newMod = new IntendModification();
      
                  boolean modSubmitted = ongoingMod.compareAndSet(null, newMod, stamp, stamp + 1);
      
                  if(modSubmitted){
                       //complete modification via a series of compare-and-swap operations.
                      //note: other threads may assist in completing the compare-and-swap
                      // operations, so some CAS may fail
                      modified = true;
                  }
              }else{
                   //attempt to complete ongoing modification, so the data structure is freed up
                  //to allow access from this thread.
                  modified = false;
              }
      
              return modified;
          }
      }
      

      非阻塞算法是不容易实现的

      正确的设计和实现非阻塞算法是不容易的。在尝试设计你的非阻塞算法之前,看一看是否已经有人设计了一种非阻塞算法正满足你的需求。

      Java已经提供了一些非阻塞实现(比如 ConcurrentLinkedQueue),相信在Java未来的版本中会带来更多的非阻塞算法的实现。

      除了Java内置非阻塞数据结构还有很多开源的非阻塞数据结构可以使用。例如,LAMX Disrupter和Cliff Click实现的非阻塞 HashMap。查看我的Java concurrency references page查看更多的资源。

      使用非阻塞算法的好处

      非阻塞算法和阻塞算法相比有几个好处。下面让我们分别看一下:

      选择

      非阻塞算法的第一个好处是,给了线程一个选择当它们请求的动作不能够被执行时做些什么。不再是被阻塞在那,请求线程关于做什么有了一个选择。有时候,一个线程什么也不能做。在这种情况下,它可以选择阻塞或自我等待,像这样把CPU的使用权让给其它的任务。不过至少给了请求线程一个选择的机会。

      在一个单个的CPU系统可能会挂起一个不能执行请求动作的线程,这样可以让其它线程获得CPU的使用权。不过即使在一个单个的CPU系统阻塞可能导致死锁,线程饥饿等并发问题。

      没有死锁

      非阻塞算法的第二个好处是,一个线程的挂起不能导致其它线程挂起。这也意味着不会发生死锁。两个线程不能互相彼此等待来获得被对方持有的锁。因为线程不会阻塞当它们不能执行它们的请求动作时,它们不能阻塞互相等待。非阻塞算法任然可能产生活锁(live lock),两个线程一直请求一些动作,但一直被告知不能够被执行(因为其他线程的动作)。

      没有线程挂起

      挂起和恢复一个线程的代价是昂贵的。没错,随着时间的推移,操作系统和线程库已经越来越高效,线程挂起和恢复的成本也不断降低。不过,线程的挂起和户对任然需要付出很高的代价。

      无论什么时候,一个线程阻塞,就会被挂起。因此,引起了线程挂起和恢复过载。由于使用非阻塞算法线程不会被挂起,这种过载就不会发生。这就意味着CPU有可能花更多时间在执行实际的业务逻辑上而不是上下文切换。

      在一个多个CPU的系统上,阻塞算法会对阻塞算法产生重要的影响。运行在CPUA上的一个线程阻塞等待运行在CPU B上的一个线程。这就降低了程序天生就具备的并行水平。当然,CPU A可以调度其他线程去运行,但是挂起和激活线程(上下文切换)的代价是昂贵的。需要挂起的线程越少越好。

      降低线程延迟

      在这里我们提到的延迟指的是一个请求产生到线程实际的执行它之间的时间。因为在非阻塞算法中线程不会被挂起,它们就不需要付昂贵的,缓慢的线程激活成本。这就意味着当一个请求执行时可以得到更快的响应,减少它们的响应延迟。

      非阻塞算法通常忙等待直到请求动作可以被执行来降低延迟。当然,在一个非阻塞数据数据结构有着很高的线程争用的系统中,CPU可能在它们忙等待期间停止消耗大量的CPU周期。这一点需要牢牢记住。非阻塞算法可能不是最好的选择如果你的数据结构哦有着很高的线程争用。不过,也常常存在通过重构你的程序来达到更低的线程争用。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:http://ifeve.com/non-blocking-algorithms/,作者:并发编程网,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:并发编程模型

      下一篇:并发性能优化 &#8211; 降低锁粒度

      相关文章

      2025-05-19 09:04:14

      《剑指Offer》按之字形顺序打印二叉树——最容易理解的思路,两分钟学会~

      《剑指Offer》按之字形顺序打印二叉树——最容易理解的思路,两分钟学会~

      2025-05-19 09:04:14
      二叉树 , 数据结构
      2025-05-19 09:04:14

      《剑指Offer》二叉搜索树的第k个节点——真没你想象中那么难,一招教你秒杀它~

      《剑指Offer》二叉搜索树的第k个节点——真没你想象中那么难,一招教你秒杀它~

      2025-05-19 09:04:14
      二叉树 , 数据结构
      2025-05-19 09:04:14

      【牛客网+LeetCode】链表 OJ强训题——高效解法

      【牛客网+LeetCode】链表 OJ强训题——高效解法

      2025-05-19 09:04:14
      数据结构 , 链表
      2025-05-09 08:20:32

      MySQL——索引(概述和结构介绍)

      索引(index)是帮助 MySQL 高效获取数据的数据结构(是一种有序的数据结构)。

      2025-05-09 08:20:32
      Tree , 存储 , 引擎 , 数据结构 , 查询 , 索引 , 结构
      2025-05-07 09:10:01

      DS初阶:顺序表的实现

      DS初阶:顺序表的实现

      2025-05-07 09:10:01
      函数 , 指针 , 数据 , 数据结构 , 数组 , 空间 , 顺序
      2025-04-18 07:11:40

      Java数据结构之《最短路径》

      Java数据结构之《最短路径》

      2025-04-18 07:11:40
      代码 , 数据结构 , 样例 , 路径 , 输入 , 输出 , 顶点
      2025-04-15 09:19:55

      Redis经典问题:BigKey问题

      在Redis中,每个Key都会对应一个Value,而这个Value的大小会影响Redis的性能表现。当我们存储的Value特别大时,就会出现BigKey问题。

      2025-04-15 09:19:55
      Key , Redis , 数据结构 , 系统 , 缓存 , 问题
      2025-04-15 09:19:45

      文心一言 VS 讯飞星火 VS chatgpt (263)-- 算法导论20.1 2题

      在Go语言中,为了支持带有卫星数据的关键字,我们可以定义一个结构体(struct)来表示这个关键字,其中可以包含一个字段用于存储关键字本身,以及另一个字段用于存储与该关键字相关联的卫星数据。

      2025-04-15 09:19:45
      关键字 , 存储 , 数据 , 数据结构
      2025-04-15 09:19:45

      文心一言 VS 讯飞星火 VS chatgpt (262)-- 算法导论20.1 1题

      在Go语言中,如果你想要一个数据结构支持重复的关键字(或键),你不能简单地使用内建的map,因为map在Go中是基于键的唯一性设计的。

      2025-04-15 09:19:45
      map , 关键字 , 数据结构 , 示例 , 重复
      2025-04-14 09:26:51

      线性表练习之Example038-编写一个函数将链表 h2 链接到链表 h1 之后,要求链接后的链表仍然保持循环链表形式

      线性表练习之Example038-编写一个函数将链表 h2 链接到链表 h1 之后,要求链接后的链表仍然保持循环链表形式

      2025-04-14 09:26:51
      java , 数据结构
      查看更多
      推荐标签

      作者介绍

      落枫
      天翼云用户

      文章

      17

      阅读量

      7013

      查看更多

      最新文章

      Java数据结构之《最短路径》

      2025-04-18 07:11:40

      完全背包代码模板

      2025-04-14 09:24:23

      Python算法学习[8]—经典数据结构问题&具体实现

      2025-04-09 09:16:56

      Python算法学习[4]—树、二叉树、霍夫曼树&算法实现

      2025-04-09 09:16:56

      golang与 C++数据结构类型对应关系是怎样的?

      2025-04-01 10:29:12

      算法题:剑指 Offer 21. 调整数组顺序使奇数位于偶数前面(题目+思路+代码+注释)时空 O(N) O(1) 2ms击败90%、67%用户

      2025-03-31 08:49:48

      查看更多

      热门文章

      C/C++泛型编程实现数据结构之栈

      2023-05-15 10:00:33

      Java内存模型

      2023-03-21 10:32:10

      Java IO: FileReader和FileWriter

      2022-11-08 07:33:31

      并发队列-无界阻塞队列LinkedBlockingQueue原理探究

      2023-03-21 10:31:48

      Oracle官方并发教程之活跃度

      2022-11-08 07:33:31

      Java IO: 流

      2022-11-08 07:35:02

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      java多线程查询数据库,并将结果汇总

      《数据结构与算法》之二叉树(补充)

      Go 语言入门很简单:sort 包

      Java锁的种类以及辨析(三):阻塞锁

      JDK8中新增原子性操作类LongAdder

      Java 异步编程导论

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号