爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      在R语言中实现Logistic逻辑回归

      首页 知识中心 软件开发 文章详情页

      在R语言中实现Logistic逻辑回归

      2023-07-07 07:48:26 阅读次数:421

      R语言开发

      逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x)。典型的使用这种模式被预测Ÿ给定一组预测的X。预测因子可以是连续的,分类的或两者的混合。

      R中的逻辑回归实现

      R可以很容易地拟合逻辑回归模型。要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别。在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步。

      数据集

      我们将研究泰坦尼克号数据集。这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集。

      目标是预测生存(如果乘客幸存,则为1,否则为0)基于某些诸如服务等级,性别,年龄等特征。我们将使用分类变量和连续变量。

      数据清理过程

      在处理真实数据集时,我们需要考虑到一些数据可能丢失的情况,因此我们需要为我们的分析准备数据集。作为第一步,我们使用该函数加载csv数据read.csv()。

      使每个缺失值编码为NA。

      training.data.raw < - read.csv('train.csv',header = T,na.strings = c(“”))

      现在我们需要检查缺失的值,查看每个变量的唯一值,使用sapply()函数将函数作为参数传递给数据框的每一列。

      PassengerId    Survived      Pclass        Name         Sex 
                0           0           0           0           0 
              Age       SibSp       Parch      Ticket        Fare 
              177           0           0           0           0 
            Cabin    Embarked 
              687           2 
      
      length(unique(x)))
      
      PassengerId    Survived      Pclass        Name         Sex 
              891           2           3         891           2 
              Age       SibSp       Parch      Ticket        Fare 
               89           7           7         681         248 
            Cabin    Embarked 
              148           4

      对缺失值进行可视化处理可能会有所帮助:可以绘制数据集并显示缺失值:

      在R语言中实现Logistic逻辑回归_R语言教程

       

       

      机舱有太多的缺失值,我们不使用它。

      使用subset()函数我们对原始数据集进行子集化,只选择相关列。

      data < - subset(training.data.raw,select = c(2,3,5,6,7,8,10,12))

      现在我们需要解释其他缺失的值。通过在拟合函数内设置参数来拟合广义线性模型时,R可以很容易地处理它们。有不同的方法可以做到这一点,一种典型的方法是用现有的平均值,中位数或模式代替缺失值。我将使用平均值。

      data$ Age [is.na(data $ Age)] < - mean(data$ Age,na.rm = T)

      就分类变量而言,使用read.table()或read.csv()默认会将分类变量编码为因子。

      为了更好地理解R如何处理分类变量,我们可以使用contrasts()函数。

      在进行拟合过程之前,先清洁和格式化数据。这个预处理步骤对于获得模型的良好拟合和更好的预测能力通常是至关重要的。

      模型拟合

      我们将数据分成两部分:训练和测试集。训练集将用于拟合我们的模型。

      model <- glm(Survived ~.,family=binomial(link='logit'),data=train)

      通过使用函数,summary()我们获得了我们模型的结果:

      Deviance Residuals: 
          Min       1Q   Median       3Q      Max  
      -2.6064  -0.5954  -0.4254   0.6220   2.4165  
      Coefficients:
                   Estimate Std. Error z value Pr(>|z|)    
      (Intercept)  5.137627   0.594998   8.635  < 2e-16 ***
      Pclass      -1.087156   0.151168  -7.192 6.40e-13 ***
      Sexmale     -2.756819   0.212026 -13.002  < 2e-16 ***
      Age         -0.037267   0.008195  -4.547 5.43e-06 ***
      SibSp       -0.292920   0.114642  -2.555   0.0106 *  
      Parch       -0.116576   0.128127  -0.910   0.3629    
      Fare         0.001528   0.002353   0.649   0.5160    
      EmbarkedQ   -0.002656   0.400882  -0.007   0.9947    
      EmbarkedS   -0.318786   0.252960  -1.260   0.2076    
      ---
      Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
      解释我们的逻辑回归模型的结果

      现在我们可以分析拟合并解释模型告诉我们什么。

      首先,我们可以看到SibSp,Fare和Embarked没有统计意义。至于统计上显着的变量,性别具有最低的p值,这表明乘客的性别与存活的可能性有很强的关联。预测因子的负系数表明所有其他变量相同,男性乘客不太可能存活下来。由于男性是虚拟变量,因此男性将对数概率降低2.75,而单位年龄增加则将对数概率降低0.037。

      现在我们可以运行anova()模型上的函数来分析偏差表

      Analysis of Deviance Table
      Model: binomial, link: logit
      Response: Survived
      Terms added sequentially (first to last)
               Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
      NULL                       799    1065.39              
      Pclass    1   83.607       798     981.79 < 2.2e-16 ***
      Sex       1  240.014       797     741.77 < 2.2e-16 ***
      Age       1   17.495       796     724.28 2.881e-05 ***
      SibSp     1   10.842       795     713.43  0.000992 ***
      Parch     1    0.863       794     712.57  0.352873    
      Fare      1    0.994       793     711.58  0.318717    
      Embarked  2    2.187       791     709.39  0.334990

      零偏差和剩余偏差之间的差异越大越好。通过分析表格,我们可以看到每次添加一个变量时出现偏差的情况。同样,增加Pclass,Sex and Age可以显着减少残余偏差。这里的大p值表示没有变量的模型或多或少地解释了相同的变化量。最终你想看到的是一个显着的下降和偏差AIC。

       

      评估模型的预测能力

      在上面的步骤,我们简要评价模型的拟合。通过设置参数type='response',R将以P(y = 1 | X)的形式输出概率。我们的决策边界将是0.5。如果P(y = 1 | X)> 0.5,则y = 1,否则y = 0。请注意,对于某些应用场景,不同的阈值可能是更好的选择。

       fitting.results < - ifelse(fitted.results> 0.5,1,0)
      misClasificError < - mean(fitted.results!= test $ Survived

      测试集上的0.84精度是相当不错的结果。但是,如果您希望得到更精确的分数,最好运行交叉验证,如k折交叉验证验证。

      作为最后一步,我们将绘制ROC曲线并计算二元分类器典型性能测量的AUC(曲线下面积)。

      ROC是通过在各种阈值设置下将真阳性率(TPR)与假阳性率(FPR)作图而产生的曲线,而AUC是ROC曲线下的面积。作为一个经验法则,具有良好预测能力的模型应该接近于1。

       

      在R语言中实现Logistic逻辑回归_R语言开发_02

       


      在R语言中实现Logistic逻辑回归 

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_14293657/2789132,作者:拓端tecdat,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:R语言时变参数VAR随机模型

      下一篇:R语言中的风险价值模型度量指标TVaR与VaR

      相关文章

      2025-04-01 09:21:49

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      2025-04-01 09:21:49
      R语言开发 , R语言教程
      2025-04-01 09:21:49

      【大数据部落】r语言多均线股票价格量化策略回测

      移动平均线是技术分析中最常用的,作为一种简单有效的数学模型而被广泛使用。均线使用的方式的差异在于均线的计算方式与价格使用方式。不同的均线计算方式会产生不同的结果,不同的价格使用也会有不同的效果。

      2025-04-01 09:21:49
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

      通过对用电负荷的消费者进行聚类,我们可以提取典型的负荷曲线,提高后续用电量预测的准确性,检测异常或监控整个智能电网(Laurinec等人(2016),Laurinec和Lucká( 2016))。

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言分段回归数据分析案例报告

      我们在这里讨论所谓的“分段线性回归模型”,因为它们利用包含虚拟变量的交互项。

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言区间数据回归分析

      回归分析是一种十分常见的数据分析方法,通过观测数据确定变量间的相互关系.传统回归分析以点数据为研究对象,预测结果也是点数据,而真实数据往往在一定范围内变动的.

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2024-09-25 10:15:32

      R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究|附代码数据

      R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究|附代码数据

      2024-09-25 10:15:32
      R语言开发 , 编程开发
      2024-09-25 10:14:09

      R语言实现偏最小二乘回归法 partial least squares (PLS)回归

      偏最小二乘回归是一种回归形式 。 当使用pls时,新 的线性组合有助于解释模型中的自变量和因变量。

      2024-09-25 10:14:09
      R语言开发
      2024-08-07 09:46:39

      R语言阈值模型代码示例

      阈值模型用于统计的几个不同区域,而不仅仅是时间序列。一般的想法是,当变量的值超过某个阈值时,过程可能表现不同。也就是说,当值大于阈值时,可以应用不同的模型,而不是当它们低于阈值时。

      2024-08-07 09:46:39
      R语言开发 , 编程开发
      2023-07-20 06:04:00

      R语言CRAN软件包Meta分析

      我一直在寻找各种方法来查找有关R包的信息,但我最近才了解CRAN_package_db()了基本tools包中的函数。如果一位同事没有向我指出,我确信我永远不会自己找到它。当被调用时,这个函数发送到由环境变量指定的CRAN镜像,R_CRAN

      2023-07-20 06:04:00
      编程开发 , R语言开发
      2023-07-07 08:01:58

      R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

      介绍向量自回归(VAR)模型的一般缺点是,估计系数的数量与滞后的数量成比例地增加。因此,随着滞后次数的增加,每个参数可用的信息较少。在贝叶斯VAR文献中,减轻这种所谓的维数诅咒的一种方法是随机搜索变量选择(SSVS),由George等人提出

      2023-07-07 08:01:58
      R语言开发
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5239321

      查看更多

      最新文章

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      2025-04-01 09:21:49

      【大数据部落】r语言多均线股票价格量化策略回测

      2025-04-01 09:21:49

      R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

      2025-03-26 09:31:37

      R语言分段回归数据分析案例报告

      2025-03-26 09:31:37

      R语言区间数据回归分析

      2025-03-26 09:31:37

      R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究|附代码数据

      2024-09-25 10:15:32

      查看更多

      热门文章

      R语言中实现层次聚类模型

      2023-02-07 10:34:04

      R语言k折交叉验证

      2023-02-07 10:34:04

      R语言实现偏最小二乘回归法 partial least squares (PLS)回归

      2024-09-25 10:14:09

      R语言使用ARIMA模型预测股票收益时间序列

      2023-02-10 10:10:49

      R语言中的prophet预测时间序列数据模型

      2023-02-07 10:34:04

      R语言风险价值VaR(Value at Risk)和损失期望值ES(Expected shortfall)的估计

      2023-02-07 10:34:04

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      用R语言模拟混合制排队随机服务排队系统

      R语言k折交叉验证

      R语言CRAN软件包Meta分析

      R语言中Gibbs抽样的Bayesian简单线性回归

      R语言调整随机对照试验中的基线协变量

      【大数据部落】r语言多均线股票价格量化策略回测

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号