爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      R语言GAM(广义相加模型)对物业耗电量进行预测

      首页 知识中心 软件开发 文章详情页

      R语言GAM(广义相加模型)对物业耗电量进行预测

      2023-02-07 10:34:04 阅读次数:548

      数据分析,R语言开发

       

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言教程

      人们对于电力的需求与依赖随着生活水平的提高而不断加深,用电负荷预测工作开始变得越来越重要,如果可以发现用电负荷的规律性,我们就可以合理安排用电负荷。我们使用某商业物业两个星期的电耗数据进行分析。

      GAM模型

      当因变量和自变量不呈线性关系时,可用广义相加模型(GAM)。GAM模型的优点,在于其解决响应变量与预测因子间的高度非线性和非单调关系方面的突出能力,是一种基于数据的模型(data-driven),数据决定着响应变量和预测因子之间的关系。电耗数据不是线性的,同时是一个有季节趋势的时间序列趋势。那么GAM模型是否可以用来预测时间序列呢?

      首先绘制出用电量的时间序列图,看下趋势

      ggplot(data_r, aes(date_time, value)) +
      
      geom_line() +
      
      theme(panel.border = element_blank(),
      
      panel.background = element_blank(),
      
      panel.grid.minor = element_line(colour = "grey90"),
      
      panel.grid.major = element_line(colour = "grey90"),
      
      panel.grid.major.x = element_line(colour = "grey90"),
      
      axis.text = element_text(size = 10),
      
      axis.title = element_text(size = 12, face = "bold")) +
      
      labs(x = "日期", y = "用电量 (kW)")

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言开发_02

      gam_1 <- gam(Load ~ s(Daily, bs = "cr", k = period) +
      
      s(Weekly, bs = "ps", k = 7),
      
      data = matrix_gam,
      
      family = gaussian)

      绘制时间序列有两个主要自变量:天和周。我们的响应变量是电力负荷。我们来构建出GAM模型

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言教程_03

      我们可以看到时间变量对电力负荷的影响。在左图中,负荷的峰值是白天下午3点左右。同时我们可以看到,周末耗电量下降。

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言教程_04

      然后我们绘制耗电量曲面图更直观的发现规律。

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言教程_05

      我们可以看到,最高峰是当“每日”变量的值接近(3点),“周”变量的值为1(这是星期一)。

      【大数据部落】R语言GAM(广义相加模型)对物业耗电量进行预测_R语言开发_06

      最后,我们可以看到,电力负荷的最高值是星期一下午3点直到星期四,然后负载在周末减少。

      结语

      GAM模型的优点在于其解决高度非线性预测问题的突出能力。GAM模型是否可以应用在其他领域?

      抛砖:logistic regression在credit risk里面用的很多,个人认为作为统计进入金融风控是个不错的切入点。

      未完待续。。。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_14293657/2789164,作者:拓端tecdat,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:R语言互联网金融下的中国保险业数据分析

      下一篇:R语言使用倾向评分提高RCT(随机对照试验)的效率

      相关文章

      2025-05-06 09:19:30

      【30天玩转python】数据分析与可视化

      数据分析是通过数据提取、整理和分析来发现有用信息的过程,而数据可视化则通过图形和图表的方式,将数据转化为视觉化信息,以便快速理解数据趋势和模式。

      2025-05-06 09:19:30
      可视化 , 数据 , 数据分析 , 数组
      2025-05-06 09:18:38

      【大数据分析工具】使用Hadoop、Spark进行大数据分析

      在当今数据驱动的世界中,处理和分析大规模数据已经成为许多企业和研究机构的核心需求。Hadoop和Spark作为大数据处理的两大主流框架,提供了强大的分布式计算能力,帮助用户在海量数据中提取有价值的信息。

      2025-05-06 09:18:38
      Hadoop , MapReduce , Spark , 数据 , 数据分析
      2025-04-01 09:21:49

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      2025-04-01 09:21:49
      R语言开发 , R语言教程
      2025-04-01 09:21:49

      【大数据部落】r语言多均线股票价格量化策略回测

      移动平均线是技术分析中最常用的,作为一种简单有效的数学模型而被广泛使用。均线使用的方式的差异在于均线的计算方式与价格使用方式。不同的均线计算方式会产生不同的结果,不同的价格使用也会有不同的效果。

      2025-04-01 09:21:49
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

      通过对用电负荷的消费者进行聚类,我们可以提取典型的负荷曲线,提高后续用电量预测的准确性,检测异常或监控整个智能电网(Laurinec等人(2016),Laurinec和Lucká( 2016))。

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言分段回归数据分析案例报告

      我们在这里讨论所谓的“分段线性回归模型”,因为它们利用包含虚拟变量的交互项。

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2025-03-26 09:31:37

      R语言区间数据回归分析

      回归分析是一种十分常见的数据分析方法,通过观测数据确定变量间的相互关系.传统回归分析以点数据为研究对象,预测结果也是点数据,而真实数据往往在一定范围内变动的.

      2025-03-26 09:31:37
      R语言开发 , R语言教程
      2025-03-04 09:05:29

      Python 与金融分析:股票数据分析实战

      随着数据科学的发展,金融领域已经开始广泛应用数据分析技术。尤其是在股票市场分析中,利用数据分析来帮助做出投资决策变得越来越重要。Python 凭借其强大的数据分析库和简单易学的特性,已经成为金融分析中的重要工具之一。

      2025-03-04 09:05:29
      数据 , 数据分析 , 获取
      2025-01-06 08:37:58

      数据仓库是什么?数据仓库简介

      数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持企业的管理决策。

      2025-01-06 08:37:58
      存储 , 支持 , 数据 , 数据仓库 , 数据分析 , 数据源
      2024-12-20 07:55:03

      使用Apache Spark进行Java数据分析

      Apache Spark是一个强大的大数据处理引擎,它支持批处理和流处理,特别适合处理大规模数据集。在Java中使用Spark,我们可以利用其强大的数据处理能力来进行各种数据分析任务。

      2024-12-20 07:55:03
      Apache , CSV , Java , JSON , Spark , 数据分析 , 数据处理
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5238309

      查看更多

      最新文章

      【大数据部落】R语言如何使用rjags R2jags来建立贝叶斯模型

      2025-04-01 09:21:49

      【大数据部落】r语言多均线股票价格量化策略回测

      2025-04-01 09:21:49

      R语言区间数据回归分析

      2025-03-26 09:31:37

      R语言分段回归数据分析案例报告

      2025-03-26 09:31:37

      R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

      2025-03-26 09:31:37

      Python 与金融分析:股票数据分析实战

      2025-03-04 09:05:29

      查看更多

      热门文章

      R语言中实现层次聚类模型

      2023-02-07 10:34:04

      R语言k折交叉验证

      2023-02-07 10:34:04

      R语言实现偏最小二乘回归法 partial least squares (PLS)回归

      2024-09-25 10:14:09

      R语言使用ARIMA模型预测股票收益时间序列

      2023-02-10 10:10:49

      R语言中的prophet预测时间序列数据模型

      2023-02-07 10:34:04

      使用R语言进行时间序列(arima,指数平滑)分析

      2023-02-07 10:34:04

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      基于Python测试数据质量的过程及库

      R语言中使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据

      Python|可视化数据分析之公众号得分

      通过SAS网络分析对人口迁移进行可视化分析

      R语言使用ARIMA模型预测股票收益时间序列

      R语言实现绘制Sankey桑基图(河流图、分流图)流程数据可视化

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号