爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      mysql/stonedb-Q16-单线程内存拷贝分析

      首页 知识中心 软件开发 文章详情页

      mysql/stonedb-Q16-单线程内存拷贝分析

      2024-09-25 10:14:48 阅读次数:103

      mysql,数据库,线程

      摘要:

      追踪在单线程中耗时的处理

      耗时追踪:

      日志埋点追踪:

      [2022-08-15 14:24:22.946166] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6445236 grouth: 60720 diff: 0.109540 diff_prepare: 0.006627 diff_add: 0.000194 diff_find: 0.062772 diff_put: 0.047780 num_put: 121428
      [2022-08-15 14:24:23.062771] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6505956 grouth: 61260 diff: 0.116552 diff_prepare: 0.006984 diff_add: 0.000198 diff_find: 0.064848 diff_put: 0.049420 num_put: 124956
      [2022-08-15 14:24:23.173366] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6567216 grouth: 60836 diff: 0.110529 diff_prepare: 0.006725 diff_add: 0.000191 diff_find: 0.063479 diff_put: 0.048347 num_put: 122460
      [2022-08-15 14:24:23.288320] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6628052 grouth: 60940 diff: 0.114900 diff_prepare: 0.006720 diff_add: 0.000199 diff_find: 0.063843 diff_put: 0.048677 num_put: 122688
      [2022-08-15 14:24:23.399512] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6688992 grouth: 60704 diff: 0.111138 diff_prepare: 0.006547 diff_add: 0.000189 diff_find: 0.064133 diff_put: 0.049099 num_put: 121548
      [2022-08-15 14:24:23.516295] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6749696 grouth: 60680 diff: 0.116727 diff_prepare: 0.006679 diff_add: 0.000193 diff_find: 0.063542 diff_put: 0.048429 num_put: 122184
      [2022-08-15 14:24:23.627377] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6810376 grouth: 60720 diff: 0.111024 diff_prepare: 0.006844 diff_add: 0.000197 diff_find: 0.063667 diff_put: 0.048514 num_put: 122232
      [2022-08-15 14:24:23.737050] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6871096 grouth: 60652 diff: 0.109618 diff_prepare: 0.006515 diff_add: 0.000188 diff_find: 0.062811 diff_put: 0.047869 num_put: 120900
      [2022-08-15 14:24:23.851360] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6931748 grouth: 60716 diff: 0.114247 diff_prepare: 0.006859 diff_add: 0.000202 diff_find: 0.064801 diff_put: 0.049638 num_put: 122700
      [2022-08-15 14:24:23.970047] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:6992464 grouth: 60856 diff: 0.118632 diff_prepare: 0.006724 diff_add: 0.000197 diff_find: 0.063345 diff_put: 0.048251 num_put: 121692
      [2022-08-15 14:24:24.081066] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7053320 grouth: 60960 diff: 0.110953 diff_prepare: 0.006540 diff_add: 0.000190 diff_find: 0.064054 diff_put: 0.048781 num_put: 124248
      [2022-08-15 14:24:24.191382] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7114280 grouth: 60904 diff: 0.110255 diff_prepare: 0.006611 diff_add: 0.000193 diff_find: 0.063375 diff_put: 0.048254 num_put: 122472
      [2022-08-15 14:24:24.303733] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7175184 grouth: 60936 diff: 0.112298 diff_prepare: 0.006960 diff_add: 0.000199 diff_find: 0.064662 diff_put: 0.049237 num_put: 124044
      [2022-08-15 14:24:24.419913] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7236120 grouth: 60700 diff: 0.116123 diff_prepare: 0.006719 diff_add: 0.000200 diff_find: 0.064567 diff_put: 0.048358 num_put: 122436
      [2022-08-15 14:24:24.530680] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7296820 grouth: 60980 diff: 0.110708 diff_prepare: 0.006647 diff_add: 0.000192 diff_find: 0.063673 diff_put: 0.048530 num_put: 123720
      [2022-08-15 14:24:24.639276] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7357800 grouth: 60708 diff: 0.108543 diff_prepare: 0.006652 diff_add: 0.000191 diff_find: 0.063180 diff_put: 0.048181 num_put: 121248
      [2022-08-15 14:24:24.657156] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:7418508 grouth: 4276 diff: 0.017845 diff_prepare: 0.000535 diff_add: 0.000015 diff_find: 0.004489 diff_put: 0.003414 num_put: 8592
      [2022-08-15 14:24:24.657175] [2412] [INFO] [aggregation_algorithm.cpp:302] MSG: MultiDimensionalGroupByScan foreach mit AggregatePackrow num: 123 diff: 13.436162
      [2022-08-15 14:24:51.870654] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:425684 grouth: 60856 diff: 0.071273 diff_prepare: 0.007115 diff_add: 0.000298 diff_find: 0.021371 diff_put: 0.015455 num_put: 33432
      [2022-08-15 14:24:51.987617] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:486540 grouth: 60752 diff: 0.116824 diff_prepare: 0.018261 diff_add: 0.000808 diff_find: 0.053993 diff_put: 0.038006 num_put: 93348
      [2022-08-15 14:24:52.108107] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:547292 grouth: 60676 diff: 0.120426 diff_prepare: 0.018962 diff_add: 0.000782 diff_find: 0.053169 diff_put: 0.037344 num_put: 94020
      [2022-08-15 14:24:52.225674] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:607968 grouth: 60712 diff: 0.117505 diff_prepare: 0.019740 diff_add: 0.000772 diff_find: 0.053401 diff_put: 0.037652 num_put: 94140
      [2022-08-15 14:24:52.343361] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:668680 grouth: 60996 diff: 0.117613 diff_prepare: 0.015985 diff_add: 0.000579 diff_find: 0.051666 diff_put: 0.037636 num_put: 93636
      [2022-08-15 14:24:52.439007] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:729676 grouth: 61012 diff: 0.095548 diff_prepare: 0.007104 diff_add: 0.000193 diff_find: 0.048993 diff_put: 0.037360 num_put: 93468
      [2022-08-15 14:24:52.532357] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:790688 grouth: 61016 diff: 0.093281 diff_prepare: 0.006180 diff_add: 0.000182 diff_find: 0.047905 diff_put: 0.036392 num_put: 92784
      [2022-08-15 14:24:52.628666] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:851704 grouth: 60832 diff: 0.096247 diff_prepare: 0.006229 diff_add: 0.000183 diff_find: 0.048750 diff_put: 0.037058 num_put: 94320
      [2022-08-15 14:24:52.730149] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:912536 grouth: 60788 diff: 0.101424 diff_prepare: 0.006093 diff_add: 0.000178 diff_find: 0.048274 diff_put: 0.036737 num_put: 93528
      [2022-08-15 14:24:52.824944] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:973324 grouth: 60796 diff: 0.094695 diff_prepare: 0.006528 diff_add: 0.000192 diff_find: 0.048764 diff_put: 0.037093 num_put: 94248
      [2022-08-15 14:24:52.919658] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:1034120 grouth: 60836 diff: 0.094649 diff_prepare: 0.006288 diff_add: 0.000186 diff_find: 0.048135 diff_put: 0.036662 num_put: 92748
      [2022-08-15 14:24:53.013901] [2412] [INFO] [aggregation_algorithm.cpp:655] MSG: AggregatePackrow foreach mit cur:1094956 grouth: 60896 diff: 0.094170 diff_prepare: 0.006317 diff_add: 0.000187 diff_find: 0.048477 diff_put: 0.036937 num_put: 93480

      调用堆栈:

      (gdb) bt
      #0 Tianmu::core::ColumnBinEncoder::EncoderText_UTF::Encode (this=0x7fb0dc91cd60, buf=0x7fb0dc91ba00 "", buf_sec=0x7fb0dc91ba4b "", vc=0x7fb0dca9e130, mit=..., update_stats=false)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/column_bin_encoder.cpp:944
      #1 0x0000000003023c01 in Tianmu::core::ColumnBinEncoder::Encode (this=0x7fb0dc006840, buf=0x7fb0dc91ba00 "", mit=..., alternative_vc=0x0, update_stats=false)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/column_bin_encoder.cpp:169
      #2 0x000000000300a737 in Tianmu::core::GroupTable::PutGroupingValue (this=0x7fd409ddd2e8, col=0, mit=...)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/group_table.h:85
      #3 0x000000000300aaa5 in Tianmu::core::GroupByWrapper::PutGroupingValue (this=0x7fd409ddd220, gr_a=0, mit=...)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/groupby_wrapper.h:82
      #4 0x00000000030073ec in Tianmu::core::AggregationAlgorithm::AggregatePackrow (this=0x7fd409ddd580, gbw=..., mit=0x7fd409ddced0, cur_tuple=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:575
      #5 0x0000000003005b94 in Tianmu::core::AggregationAlgorithm::MultiDimensionalGroupByScan (this=0x7fd409ddd580, gbw=..., limit=@0x7fd409ddd208: 7422784, offset=@0x7fd409ddd608: 0, sender=0x0,
      limit_less_than_no_groups=false) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:284
      #6 0x00000000030053ca in Tianmu::core::AggregationAlgorithm::Aggregate (this=0x7fd409ddd580, just_distinct=false, limit=@0x7fd409ddd600: -1, offset=@0x7fd409ddd608: 0, sender=0x0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:196
      #7 0x0000000002df1e3e in Tianmu::core::TempTable::Materialize (this=0x7fb0dc0013d0, in_subq=false, sender=0x7fb0dc931ed0, lazy=false)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/temp_table.cpp:1972
      #8 0x0000000002d3a414 in Tianmu::core::Engine::Execute (this=0x8850d60, thd=0x7fb0dc0125f0, lex=0x7fb0dc014918, result_output=0x7fb0dcac60a0, unit_for_union=0x0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/engine_execute.cpp:426
      #9 0x0000000002d395b6 in Tianmu::core::Engine::HandleSelect (this=0x8850d60, thd=0x7fb0dc0125f0, lex=0x7fb0dc014918, result=@0x7fd409dddd18: 0x7fb0dcac60a0, setup_tables_done_option=0,
      res=@0x7fd409dddd14: 0, optimize_after_tianmu=@0x7fd409dddd0c: 1, tianmu_free_join=@0x7fd409dddd10: 1, with_insert=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/engine_execute.cpp:232
      #10 0x0000000002e21e47 in Tianmu::dbhandler::TIANMU_HandleSelect (thd=0x7fb0dc0125f0, lex=0x7fb0dc014918, result=@0x7fd409dddd18: 0x7fb0dcac60a0, setup_tables_done_option=0, res=@0x7fd409dddd14: 0,
      optimize_after_tianmu=@0x7fd409dddd0c: 1, tianmu_free_join=@0x7fd409dddd10: 1, with_insert=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/handler/ha_rcengine.cpp:82
      #11 0x0000000002462f6a in execute_sqlcom_select (thd=0x7fb0dc0125f0, all_tables=0x7fb0dcb67548) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:5182
      #12 0x000000000245c2ee in mysql_execute_command (thd=0x7fb0dc0125f0, first_level=true) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:2831
      #13 0x0000000002463f33 in mysql_parse (thd=0x7fb0dc0125f0, parser_state=0x7fd409ddeeb0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:5621
      #14 0x00000000024591cb in dispatch_command (thd=0x7fb0dc0125f0, com_data=0x7fd409ddf650, command=COM_QUERY) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:1495
      #15 0x00000000024580f7 in do_command (thd=0x7fb0dc0125f0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:1034
      #16 0x000000000258accd in handle_connection (arg=0xc04bf80) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/conn_handler/connection_handler_per_:313
      #17 0x0000000002c71102 in pfs_spawn_thread (arg=0x16593df0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/perfschema/:2197
      #18 0x00007fd458e22ea5 in start_thread () from /lib64/libpthread.so.0
      #19 0x00007fd457057b0d in clone () from /lib64/libc.so.6
      (gdb) bt
      #0 my_strnxfrm_unicode (cs=0x487ec20 <my_charset_utf8mb4_general_ci>, dst=0x7f98f4ba5970 "", dstlen=16, nweights=16,
      src=0x7f98ffec0000 "Brand#13Brand#13Brand#42Brand#34Brand#32Brand#24Brand#11Brand#44Brand#43Brand#54Brand#25Brand#33Brand#55Brand#13Brand#15Brand#32Brand#43Brand#11Brand#23Brand#12Brand#33Brand#43Brand#35Brand#52Brand#55"..., srclen=8, flags=64) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/strings/ctype-utf8.c:5146
      #1 0x00000000030035e9 in Tianmu::common::strnxfrm (collation=..., src=0x7f98f4ba5970 "", src_len=16,
      dest=0x7f98ffec0000 "Brand#13Brand#13Brand#42Brand#34Brand#32Brand#24Brand#11Brand#44Brand#43Brand#54Brand#25Brand#33Brand#55Brand#13Brand#15Brand#32Brand#43Brand#11Brand#23Brand#12Brand#33Brand#43Brand#35Brand#52Brand#55"..., dest_len=8) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/common/mysql_gate.cpp:45
      #2 0x00000000030278e7 in Tianmu::core::ColumnBinEncoder::EncoderText_UTF::Encode (this=0x7f98f4919ea0, buf=0x7f98f4ba5970 "", buf_sec=0x7f98f4ba59bb "", vc=0x7f98f4a38a80, mit=...,
      update_stats=false) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/column_bin_encoder.cpp:941
      #3 0x0000000003023c9f in Tianmu::core::ColumnBinEncoder::Encode (this=0x7f98f4988e80, buf=0x7f98f4ba5970 "", mit=..., alternative_vc=0x0, update_stats=false)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/column_bin_encoder.cpp:169
      #4 0x000000000300a7d5 in Tianmu::core::GroupTable::PutGroupingValue (this=0x7fbc212ae2e8, col=0, mit=...)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/group_table.h:85
      #5 0x000000000300ab43 in Tianmu::core::GroupByWrapper::PutGroupingValue (this=0x7fbc212ae220, gr_a=0, mit=...)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/groupby_wrapper.h:82
      #6 0x00000000030073fc in Tianmu::core::AggregationAlgorithm::AggregatePackrow (this=0x7fbc212ae580, gbw=..., mit=0x7fbc212aded0, cur_tuple=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:577
      #7 0x0000000003005b94 in Tianmu::core::AggregationAlgorithm::MultiDimensionalGroupByScan (this=0x7fbc212ae580, gbw=..., limit=@0x7fbc212ae208: 7422784, offset=@0x7fbc212ae608: 0, sender=0x0,
      limit_less_than_no_groups=false) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:284
      #8 0x00000000030053ca in Tianmu::core::AggregationAlgorithm::Aggregate (this=0x7fbc212ae580, just_distinct=false, limit=@0x7fbc212ae600: -1, offset=@0x7fbc212ae608: 0, sender=0x0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/aggregation_algorithm.cpp:196
      #9 0x0000000002df1e3e in Tianmu::core::TempTable::Materialize (this=0x7f98f4b9e1d0, in_subq=false, sender=0x7f98f4931ed0, lazy=false)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/temp_table.cpp:1972
      #10 0x0000000002d3a414 in Tianmu::core::Engine::Execute (this=0x8568190, thd=0x7f98f40125f0, lex=0x7f98f4014918, result_output=0x7f98f4b90fa0, unit_for_union=0x0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/engine_execute.cpp:426
      #11 0x0000000002d395b6 in Tianmu::core::Engine::HandleSelect (this=0x8568190, thd=0x7f98f40125f0, lex=0x7f98f4014918, result=@0x7fbc212aed18: 0x7f98f4b90fa0, setup_tables_done_option=0,
      res=@0x7fbc212aed14: 0, optimize_after_tianmu=@0x7fbc212aed0c: 1, tianmu_free_join=@0x7fbc212aed10: 1, with_insert=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/core/engine_execute.cpp:232
      #12 0x0000000002e21e47 in Tianmu::dbhandler::TIANMU_HandleSelect (thd=0x7f98f40125f0, lex=0x7f98f4014918, result=@0x7fbc212aed18: 0x7f98f4b90fa0, setup_tables_done_option=0, res=@0x7fbc212aed14: 0,
      optimize_after_tianmu=@0x7fbc212aed0c: 1, tianmu_free_join=@0x7fbc212aed10: 1, with_insert=0)
      at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/tianmu/handler/ha_rcengine.cpp:82
      #13 0x0000000002462f6a in execute_sqlcom_select (thd=0x7f98f40125f0, all_tables=0x7f98f4b674e8) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:5182
      #14 0x000000000245c2ee in mysql_execute_command (thd=0x7f98f40125f0, first_level=true) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:2831
      #15 0x0000000002463f33 in mysql_parse (thd=0x7f98f40125f0, parser_state=0x7fbc212afeb0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:5621
      #16 0x00000000024591cb in dispatch_command (thd=0x7f98f40125f0, com_data=0x7fbc212b0650, command=COM_QUERY) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:1495
      #17 0x00000000024580f7 in do_command (thd=0x7f98f40125f0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/sql_:1034
      #18 0x000000000258accd in handle_connection (arg=0xb4d1ed0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/sql/conn_handler/connection_handler_per_:313
      #19 0x0000000002c71102 in pfs_spawn_thread (arg=0x16229df0) at /home/jenkins/workspace/stonedb5.7-zsl-centos7.9-30-119-20220805/storage/perfschema/:2197
      #20 0x00007fbc70ae1ea5 in start_thread () from /lib64/libpthread.so.0
      #21 0x00007fbc6ed16b0d in clone () from /lib64/libc.so.6

      核心函数:

      ColumnBinEncoder::EncoderText_UTF::Encode

      void ColumnBinEncoder::EncoderText_UTF::Encode(uchar *buf, uchar *buf_sec, vcolumn::VirtualColumn *vc, MIIterator &mit,
      bool update_stats) {
      if (null_status > 0 && vc->IsNull(mit)) {
      SetNull(buf, buf_sec);
      return;
      }
      std::memset(buf, 0, size);
      types::BString s;
      vc->GetNotNullValueString(s, mit);
      if (update_stats) {
      if (!min_max_set) {
      maxs.PersistentCopy(s);
      mins.PersistentCopy(s);
      min_max_set = true;
      } else {
      if (CollationStrCmp(collation, s, maxs) > 0) maxs.PersistentCopy(s);
      if (CollationStrCmp(collation, s, mins) < 0) mins.PersistentCopy(s);
      }
      }
      common::strnxfrm(collation, buf, size - sizeof(uint32_t), (uchar *)s.GetDataBytesPointer(), s.len);
      // int coded_len = types::CollationBufLen(collation, s.len);
      uint32_t length = s.len + 1;
      std::memcpy(buf + size - sizeof(uint32_t), &length, sizeof(uint32_t));
      if (descending) Negate(buf, size);
      if (size_sec > 0) {
      std::memset(buf_sec, 0, size_sec);
      std::memcpy(buf_sec + size_sec - sizeof(uint32_t), &length, sizeof(uint32_t));
      if (s.len > 0) std::memcpy(buf_sec, s.GetDataBytesPointer(), s.len);
      }
      }

      该函数原实现:

      bool ColumnBinEncoder::EncoderText_UTF::Encode(uchar* buf, uchar* buf_sec, RCBString& s, bool sec_column, bool update_stats)
      {
      if(null_status > 0 && s.IsNull()) {
      SetNull(buf, buf_sec);
      return true;
      }
      memset(buf, 0, size);
      if(update_stats) {
      if(!min_max_set) {
      maxs = s;
      mins = s;
      min_max_set = true;
      } else {
      if(CollationStrCmp(collation, s, maxs) > 0)
      maxs = s;
      if(CollationStrCmp(collation, s, mins) < 0)
      mins = s;
      }
      }
      strnxfrm(collation, buf, size - 2, (uchar*)s.Value(), s.len);
      //int coded_len = CollationBufLen(collation, s.len);
      buf[size - 2] = (size - 2 + 1) / 256;
      buf[size - 1] = (size - 2 + 1) % 256;
      if(descending)
      Negate(buf, size);
      if(size_sec > 0) {
      memset(buf_sec, 0, size_sec);
      buf_sec[size_sec - 2] = (s.len + 1) / 256;
      buf_sec[size_sec - 1] = (s.len + 1) % 256;
      if(s.len > 0)
      memcpy(buf_sec, s.GetDataBytesPointer(), s.len);
      }
      return true;
      }

      耗时原因分析:

      一. like string 的子条件被判定为需要走聚合

      void GroupByWrapper::AddAggregatedColumn(int orig_attr_no, TempTable::Attr &a, int64_t max_no_vals, int64_t min_v,
      int64_t max_v, int max_size)

      {
      // MEASURE_FET("GroupByWrapper::AddAggregatedColumn(...)");
      GT_Aggregation ag_oper;
      common::CT ag_type = a.TypeName(); // original type, not the output one (it
      // is important e.g. for AVG)
      int ag_size = max_size;
      int ag_prec = a.Type().GetScale();
      bool ag_distinct = a.distinct;
      int attr_no = no_attr; // i.e. add at the end (after all grouping cols and
      // previous aggr.cols)
      DTCollation ag_collation = a.GetCollation();

      virt_col[attr_no] = a.term.vc;

      DEBUG_ASSERT(virt_col[attr_no] || a.term.IsNull()); // the second possibility is count(*)

      is_lookup[attr_no] = false;
      dist_vals[attr_no] = max_no_vals;

      switch (a.mode) {
      case common::ColOperation::SUM:
      ag_oper = GT_Aggregation::GT_SUM;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::AVG:
      ag_oper = GT_Aggregation::GT_AVG;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::MIN:
      ag_oper = GT_Aggregation::GT_MIN;
      break;
      case common::ColOperation::MAX:
      ag_oper = GT_Aggregation::GT_MAX;
      break;
      case common::ColOperation::COUNT:
      if (a.term.IsNull() || (!ag_distinct && virt_col[attr_no]->IsConst())) {
      if (virt_col[attr_no] && virt_col[attr_no]->IsConst()) {
      MIIterator dummy(NULL, p_power);
      if (virt_col[attr_no]->IsNull(dummy)) {
      ag_oper = GT_Aggregation::GT_COUNT_NOT_NULL;
      ag_type = virt_col[attr_no]->TypeName();
      ag_size = max_size;
      } else {
      virt_col[attr_no] = NULL; // forget about constant in count(...), except null
      ag_oper = GT_Aggregation::GT_COUNT;
      }
      } else {
      virt_col[attr_no] = NULL; // forget about constant in count(...), except null
      ag_oper = GT_Aggregation::GT_COUNT;
      }
      } else {
      ag_oper = GT_Aggregation::GT_COUNT_NOT_NULL;
      ag_type = virt_col[attr_no]->TypeName();
      ag_size = max_size;
      }
      break;
      case common::ColOperation::LISTING:
      ag_oper = GT_Aggregation::GT_LIST;
      break;
      case common::ColOperation::VAR_POP:
      ag_oper = GT_Aggregation::GT_VAR_POP;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::VAR_SAMP:
      ag_oper = GT_Aggregation::GT_VAR_SAMP;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::STD_POP:
      ag_oper = GT_Aggregation::GT_STD_POP;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::STD_SAMP:
      ag_oper = GT_Aggregation::GT_STD_SAMP;
      ag_type = virt_col[attr_no]->TypeName();
      ag_prec = virt_col[attr_no]->Type().GetScale();
      break;
      case common::ColOperation::BIT_AND:
      ag_oper = GT_Aggregation::GT_BIT_AND;
      break;
      case common::ColOperation::BIT_OR:
      ag_oper = GT_Aggregation::GT_BIT_OR;
      break;
      case common::ColOperation::BIT_XOR:
      ag_oper = GT_Aggregation::GT_BIT_XOR;
      break;
      case common::ColOperation::GROUP_CONCAT:
      ag_oper = GT_Aggregation::GT_GROUP_CONCAT;
      break;
      default:
      throw common::NotImplementedException("Aggregation not implemented");
      }

      if (virt_col[attr_no] && virt_col[attr_no]->Type().IsLookup() &&
      !types::RequiresUTFConversions(virt_col[attr_no]->GetCollation()) &&
      (ag_oper == GT_Aggregation::GT_COUNT || ag_oper == GT_Aggregation::GT_COUNT_NOT_NULL ||
      ag_oper == GT_Aggregation::GT_LIST)) {
      // lookup for these operations may use codes
      ag_size = 4; // integer
      ag_prec = 0;
      ag_type = common::CT::INT;
      is_lookup[attr_no] = true;
      }
      if (ag_oper == GT_Aggregation::GT_COUNT)
      input_mode[attr_no] = GBInputMode::GBIMODE_NO_VALUE;
      else if (ag_oper == GT_Aggregation::GT_GROUP_CONCAT)
      input_mode[attr_no] = GBInputMode::GBIMODE_AS_TEXT;
      else
      input_mode[attr_no] =
      (ATI::IsStringType(virt_col[attr_no]->TypeName()) &&
      (!is_lookup[attr_no] || types::RequiresUTFConversions(virt_col[attr_no]->GetCollation()))
      ? GBInputMode::GBIMODE_AS_TEXT
      : GBInputMode::GBIMODE_AS_INT64);

      TIANMU_LOG(LogCtl_Level::DEBUG,
      "attr_no %d, input_mode[attr_no] %d, a.alias %s, a.si.separator "
      "%s, direction %d, ag_type %d, ag_size %d",
      attr_no, input_mode[attr_no], a.alias, a.si.separator.c_str(), a.si.order, ag_type, ag_size);

      gt.AddAggregatedColumn(virt_col[attr_no], ag_oper, ag_distinct, ag_type, ag_size, ag_prec, ag_collation,
      a.si); // note: size will be automatically calculated for all numericals
      gt.AggregatedColumnStatistics(no_aggregated_attr, max_no_vals, min_v, max_v);
      attr_mapping[orig_attr_no] = attr_no;
      no_aggregated_attr++;
      no_attr++;
      }

      case common::ColOperation::LISTING: ag_oper = GT_Aggregation::GT_LIST; break;

      二. 聚合时将string类型的值都做了一次memcpy

      void ColumnBinEncoder::EncoderText_UTF::Encode(uchar *buf, uchar *buf_sec, vcolumn::VirtualColumn *vc, MIIterator &mit,
      bool update_stats) {
      if (null_status > 0 && vc->IsNull(mit)) {
      SetNull(buf, buf_sec);
      return;
      }
      std::memset(buf, 0, size);
      types::BString s;
      vc->GetNotNullValueString(s, mit);
      if (update_stats) {
      if (!min_max_set) {
      maxs.PersistentCopy(s);
      mins.PersistentCopy(s);
      min_max_set = true;
      } else {
      if (CollationStrCmp(collation, s, maxs) > 0) maxs.PersistentCopy(s);
      if (CollationStrCmp(collation, s, mins) < 0) mins.PersistentCopy(s);
      }
      }
      common::strnxfrm(collation, buf, size - sizeof(uint32_t), (uchar *)s.GetDataBytesPointer(), s.len);
      // int coded_len = types::CollationBufLen(collation, s.len);
      uint32_t length = s.len + 1;
      std::memcpy(buf + size - sizeof(uint32_t), &length, sizeof(uint32_t));
      if (descending) Negate(buf, size);
      if (size_sec > 0) {
      std::memset(buf_sec, 0, size_sec);
      std::memcpy(buf_sec + size_sec - sizeof(uint32_t), &length, sizeof(uint32_t));
      if (s.len > 0) std::memcpy(buf_sec, s.GetDataBytesPointer(), s.len);
      }
      }

      bool ValueMatching_LookupTable::FindCurrentRow(unsigned char *input_buffer, int64_t &row, bool add_if_new) {
      row = 0;
      std::memcpy(&row, input_buffer, matching_width);
      DEBUG_ASSERT(row < max_no_rows);
      if (occupied->Get(row)) return true;
      if (!add_if_new) {
      row = common::NULL_VALUE_64;
      return false;
      }
      std::memcpy(t + row * total_width, input_buffer, input_buffer_width);
      occupied->Set(row);
      occupied_table[no_rows] = (int)row;
      no_rows++;
      return false;
      }
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/adofsauron/5644460,作者:帝尊悟世,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:80行JavaScript代码实现的贪食蛇游戏,简约之美

      下一篇:Spring5参考指南: SpEL

      相关文章

      2025-05-19 09:05:01

      项目更新到公网服务器的操作步骤

      项目更新到公网服务器的操作步骤

      2025-05-19 09:05:01
      公网 , 数据库 , 文件 , 更新 , 服务器
      2025-05-19 09:04:53

      Django rest froamwork-ModelSerializer

      Django rest froamwork-ModelSerializer

      2025-05-19 09:04:53
      django , sqlite , 数据库
      2025-05-19 09:04:38

      mysql只有在任务处于完成状态才能运行

      mysql只有在任务处于完成状态才能运行

      2025-05-19 09:04:38
      MySQL , 任务 , 数据库 , 查询 , 状态
      2025-05-19 09:04:30

      设置28401事件后启动数据库时报错ORA-49100

      设置28401事件后启动数据库时报错ORA-49100

      2025-05-19 09:04:30
      ORA , 数据库 , 时报
      2025-05-16 09:15:17

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17
      单例 , 线程 , 队列
      2025-05-14 10:07:38

      超级好用的C++实用库之互斥锁

      互斥锁是一种用于多线程编程的同步机制,其主要目的是确保在并发执行环境中,同一时间内只有一个线程能够访问和修改共享资源。

      2025-05-14 10:07:38
      CHP , Lock , 互斥 , 线程 , 释放 , 锁定
      2025-05-14 10:03:13

      超级好用的C++实用库之线程基类

      在C++中,线程是操作系统能够进行运算调度的最小单位。一个进程可以包含多个线程,这些线程共享进程的资源,比如:内存空间和系统资源,但它们有自己的指令指针、堆栈和局部变量等。

      2025-05-14 10:03:13
      Linux , void , Windows , 函数 , 操作系统 , 线程
      2025-05-14 10:03:13

      MySQL 索引优化以及慢查询优化

      MySQL 是一种广泛使用的关系型数据库管理系统,因其性能优异和使用便捷而备受欢迎。然而,随着数据量的增长和查询复杂度的增加,性能瓶颈也变得越来越明显。

      2025-05-14 10:03:13
      MySQL , 优化 , 使用 , 性能 , 数据库 , 查询 , 索引
      2025-05-14 10:03:05

      Oracle数据库用户权限分析

      Oracle数据库用户权限分析

      2025-05-14 10:03:05
      Oracle , 分析 , 数据库 , 权限 , 用户
      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      在高并发系统中,Redis 缓存是一种常见的性能优化方式。然而,缓存击穿问题也伴随着高并发访问而来。

      2025-05-14 10:02:48
      Redis , 互斥 , 数据库 , 线程 , 缓存 , 请求
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5254164

      查看更多

      最新文章

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17

      超级好用的C++实用库之互斥锁

      2025-05-14 10:07:38

      超级好用的C++实用库之线程基类

      2025-05-14 10:03:13

      互斥锁解决redis缓存击穿

      2025-05-14 10:02:48

      java怎么对线程池做监控

      2025-05-14 09:51:15

      如何向线程传递参数

      2025-05-12 08:40:18

      查看更多

      热门文章

      Java线程同步synchronized wait notifyAll

      2023-04-18 14:15:05

      MySQL 5.7 JSON函数学习

      2023-04-27 08:00:00

      mysql列存储引擎-字符串属性列-列压缩测试

      2023-04-23 09:34:23

      Python数据库测试实战教程

      2023-06-07 07:31:52

      Python编程:利用上下文管理器管理MySQL的链接对象

      2023-02-21 03:02:11

      Android Priority Job Queue (Job Manager):线程任务的容错重启机制(二)

      2024-09-25 10:13:46

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      Java读写MySQL数据库小实例

      Java并发基础:Semaphore全面解析!

      Java中如何实现自定义的线程池与任务调度

      JVM内存结构

      C#线程初步

      超级好用的C++实用库之互斥锁

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号