爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Linux信号量

      首页 知识中心 其他 文章详情页

      Linux信号量

      2023-06-27 10:02:02 阅读次数:429

      linux,信号量

      POSIX信号量

      信号量的原理

      • 我们将可能会被多个执行流同时访问的资源叫做临界资源,临界资源需要进行保护否则会出现数据不一致等问题。
      • 当我们仅用一个互斥锁对临界资源进行保护时,相当于我们将这块临界资源看作一个整体,同一时刻只允许一个执行流对这块临界资源进行访问。
      • 但实际我们可以将这块临界资源再分割为多个区域,当多个执行流需要访问临界资源时,如果这些执行流访问的是临界资源的不同区域,那么我们可以让这些执行流同时访问临界资源的不同区域,此时不会出现数据不一致等问题。

      信号量的概念

      信号量(信号灯)本质是一个计数器,是描述临界资源中资源数目的计数器,信号量能够更细粒度的对临界资源进行管理。

      每个执行流在进入临界区之前都应该先申请信号量,申请成功就有了操作特点的临界资源的权限,当操作完毕后就应该释放信号量。
      Linux信号量
      信号量的PV操作:

      • P操作:我们将申请信号量称为P操作,申请信号量的本质就是申请获得临界资源中某块资源的使用权限,当申请成功时临界资源中资源的数目应该减一,因此P操作的本质就是让计数器减一。
      • V操作:我们将释放信号量称为V操作,释放信号量的本质就是归还临界资源中某块资源的使用权限,当释放成功时临界资源中资源的数目就应该加一,因此V操作的本质就是让计数器加一。

      PV操作必须是原子操作

      多个执行流为了访问临界资源会竞争式的申请信号量,因此信号量是会被多个执行流同时访问的,也就是说信号量本质也是临界资源。

      但信号量本质就是用于保护临界资源的,我们不可能再用信号量去保护信号量,所以信号量的PV操作必须是原子操作。

      注意: 内存当中变量的++、--操作并不是原子操作,因此信号量不可能只是简单的对一个全局变量进行++、--操作。

      申请信号量失败被挂起等待

      当执行流在申请信号量时,可能此时信号量的值为0,也就是说信号量描述的临界资源已经全部被申请了,此时该执行流就应该在该信号量的等待队列当中进行等待,直到有信号量被释放时再被唤醒。

      注意: 信号量的本质是计数器,但不意味着只有计数器,信号量还包括一个等待队列。

      信号量函数

      初始化信号量

      初始化信号量的函数叫做sem_init,该函数的函数原型如下:

      int sem_init(sem_t *sem, int pshared, unsigned int value);
      

      参数说明:

      • sem:需要初始化的信号量。
      • pshared:传入0值表示线程间共享,传入非零值表示进程间共享。
      • value:信号量的初始值(计数器的初始值)。

      返回值说明:

      • 初始化信号量成功返回0,失败返回-1。

      注意: POSIX信号量和System V信号量作用相同,都是用于同步操作,达到无冲突的访问共享资源目的,但POSIX信号量可以用于线程间同步。

      销毁信号量

      销毁信号量的函数叫做sem_destroy,该函数的函数原型如下:

      int sem_destroy(sem_t *sem);
      

      参数说明:

      • sem:需要销毁的信号量。

      返回值说明:

      • 销毁信号量成功返回0,失败返回-1。

      等待信号量(申请信号量)

      等待信号量的函数叫做sem_wait,该函数的函数原型如下:

      int sem_wait(sem_t *sem);
      

      参数说明:

      • sem:需要等待的信号量。

      返回值说明:

      • 等待信号量成功返回0,信号量的值减一。
      • 等待信号量失败返回-1,信号量的值保持不变。

      发布信号量(释放信号量)

      发布信号量的函数叫做sem_post,该函数的函数原型如下:

      int sem_post(sem_t *sem);
      

      参数说明:

      • sem:需要发布的信号量。

      返回值说明:

      • 发布信号量成功返回0,信号量的值加一。
      • 发布信号量失败返回-1,信号量的值保持不变。

      二元信号量模拟实现互斥功能

      信号量本质是一个计数器,如果将信号量的初始值设置为1,那么此时该信号量叫做二元信号量。

      信号量的初始值为1,说明信号量所描述的临界资源只有一份,此时信号量的作用基本等价于互斥锁。

      例如,下面我们实现一个多线程抢票系统,其中我们用二元信号量模拟实现多线程互斥。

      我们在主线程当中创建四个新线程,让这四个新线程执行抢票逻辑,并且每次抢完票后打印输出此时剩余的票数,其中我们用全局变量tickets记录当前剩余的票数,此时tickets是会被多个执行流同时访问的临界资源,在下面的代码中我们并没有对tickets进行任何保护操作。

      #include <iostream>
      #include <string>
      #include <unistd.h>
      #include <pthread.h>
      
      int tickets = 2000;
      void* TicketGrabbing(void* arg)
      {
      	std::string name = (char*)arg;
      	while (true){
      		if (tickets > 0){
      			usleep(1000);
      			std::cout << name << " get a ticket, tickets left: " << --tickets << std::endl;
      		}
      		else{
      			break;
      		}
      	}
      	std::cout << name << " quit..." << std::endl;
      	pthread_exit((void*)0);
      }
      
      int main()
      {
      	pthread_t tid1, tid2, tid3, tid4;
      	pthread_create(&tid1, nullptr, TicketGrabbing, (void*)"thread 1");
      	pthread_create(&tid2, nullptr, TicketGrabbing, (void*)"thread 2");
      	pthread_create(&tid3, nullptr, TicketGrabbing, (void*)"thread 3");
      	pthread_create(&tid4, nullptr, TicketGrabbing, (void*)"thread 4");
      	
      	pthread_join(tid1, nullptr);
      	pthread_join(tid2, nullptr);
      	pthread_join(tid3, nullptr);
      	pthread_join(tid4, nullptr);
      	return 0;
      }
      

      运行代码后可以看到,线程打印输出剩余票数时出现了票数剩余为负数的情况,这是不符合我们预期的。
      Linux信号量
      下面我们在抢票逻辑当中加入二元信号量,让每个线程在访问全局变量tickets之前先申请信号量,访问完毕后再释放信号量,此时二元信号量就达到了互斥的效果。

      #include <iostream>
      #include <string>
      #include <unistd.h>
      #include <pthread.h>
      #include <semaphore.h>
      
      class Sem{
      public:
      	Sem(int num)
      	{
      		sem_init(&_sem, 0, num);
      	}
      	~Sem()
      	{
      		sem_destroy(&_sem);
      	}
      	void P()
      	{
      		sem_wait(&_sem);
      	}
      	void V()
      	{
      		sem_post(&_sem);
      	}
      private:
      	sem_t _sem;
      };
      
      Sem sem(1); //二元信号量
      int tickets = 2000;
      void* TicketGrabbing(void* arg)
      {
      	std::string name = (char*)arg;
      	while (true){
      		sem.P();
      		if (tickets > 0){
      			usleep(1000);
      			std::cout << name << " get a ticket, tickets left: " << --tickets << std::endl;
      			sem.V();
      		}
      		else{
      			sem.V();
      			break;
      		}
      	}
      	std::cout << name << " quit..." << std::endl;
      	pthread_exit((void*)0);
      }
      
      int main()
      {
      	pthread_t tid1, tid2, tid3, tid4;
      	pthread_create(&tid1, nullptr, TicketGrabbing, (void*)"thread 1");
      	pthread_create(&tid2, nullptr, TicketGrabbing, (void*)"thread 2");
      	pthread_create(&tid3, nullptr, TicketGrabbing, (void*)"thread 3");
      	pthread_create(&tid4, nullptr, TicketGrabbing, (void*)"thread 4");
      	
      	pthread_join(tid1, nullptr);
      	pthread_join(tid2, nullptr);
      	pthread_join(tid3, nullptr);
      	pthread_join(tid4, nullptr);
      	return 0;
      }
      

      运行代码后就不会出现剩余票数为负的情况了,因为此时同一时刻只会有一个执行流对全局变量tickets进行访问,不会出现数据不一致的问题。
      Linux信号量

      基于环形队列的生产消费模型

      Linux信号量

      空间资源和数据资源

      生产者关注的是空间资源,消费者关注的是数据资源

      对于生产者和消费者来说,它们关注的资源是不同的:

      • 生产者关注的是环形队列当中是否有空间(blank),只要有空间生产者就可以进行生产。
      • 消费者关注的是环形队列当中是否有数据(data),只要有数据消费者就可以进行消费。

      blank_sem和data_sem的初始值设置

      现在我们用信号量来描述环形队列当中的空间资源(blank_sem)和数据资源(data_sem),在我们初始信号量时给它们设置的初始值是不同的:

      • blank_sem的初始值我们应该设置为环形队列的容量,因为刚开始时环形队列当中全是空间。
      • data_sem的初始值我们应该设置为0,因为刚开始时环形队列当中没有数据。

      生产者和消费者申请和释放资源

      生产者申请空间资源,释放数据资源

      对于生产者来说,生产者每次生产数据前都需要先申请blank_sem:

      • 如果blank_sem的值不为0,则信号量申请成功,此时生产者可以进行生产操作。
      • 如果blank_sem的值为0,则信号量申请失败,此时生产者需要在blank_sem的等待队列下进行阻塞等待,直到环形队列当中有新的空间后再被唤醒。

      当生产者生产完数据后,应该释放data_sem:

      • 虽然生产者在进行生产前是对blank_sem进行的P操作,但是当生产者生产完数据,应该对data_sem进行V操作而不是blank_sem。
      • 生产者在生产数据前申请到的是blank位置,当生产者生产完数据后,该位置当中存储的是生产者生产的数据,在该数据被消费者消费之前,该位置不再是blank位置,而应该是data位置。
      • 当生产者生产完数据后,意味着环形队列当中多了一个data位置,因此我们应该对data_sem进行V操作。

      消费者申请数据资源,释放空间资源

      对于消费者来说,消费者每次消费数据前都需要先申请data_sem:

      • 如果data_sem的值不为0,则信号量申请成功,此时消费者可以进行消费操作。
      • 如果data_sem的值为0,则信号量申请失败,此时消费者需要在data_sem的等待队列下进行阻塞等待,直到环形队列当中有新的数据后再被唤醒。

      当消费者消费完数据后,应该释放blank_sem:

      • 虽然消费者在进行消费前是对data_sem进行的P操作,但是当消费者消费完数据,应该对blank_sem进行V操作而不是data_sem。
      • 消费者在消费数据前申请到的是data位置,当消费者消费完数据后,该位置当中的数据已经被消费过了,再次被消费就没有意义了,为了让生产者后续可以在该位置生产新的数据,我们应该将该位置算作blank位置,而不是data位置。
      • 当消费者消费完数据后,意味着环形队列当中多了一个blank位置,因此我们应该对blank_sem进行V操作。

      必须遵守的两个规则

      在基于环形队列的生产者和消费者模型当中,生产者和消费者必须遵守如下两个规则。

      第一个规则:生产者和消费者不能对同一个位置进行访问。

      生产者和消费者在访问环形队列时:

      • 如果生产者和消费者访问的是环形队列当中的同一个位置,那么此时生产者和消费者就相当于同时对这一块临界资源进行了访问,这当然是不允许的。
      • 而如果生产者和消费者访问的是环形队列当中的不同位置,那么此时生产者和消费者是可以同时进行生产和消费的,此时不会出现数据不一致等问题。

      如下图:
      Linux信号量

      第二个规则:无论是生产者还是消费者,都不应该将对方套一个圈以上。

      • 生产者从消费者的位置开始一直按顺时针方向进行生产,如果生产者生产的速度比消费者消费的速度快,那么当生产者绕着消费者生产了一圈数据后再次遇到消费者,此时生产者就不应该再继续生产了,因为再生产就会覆盖还未被消费者消费的数据。
      • 同理,消费者从生产者的位置开始一直按顺时针方向进行消费,如果消费者消费的速度比生产者生产的速度快,那么当消费者绕着生产者消费了一圈数据后再次遇到生产者,此时消费者就不应该再继续消费了,因为再消费就会消费到缓冲区中保存的废弃数据。

      如下图:
      Linux信号量

      代码实现

      其中的RingQueue就是生产者消费者模型当中的交易场所,我们可以用C++STL库当中的vector进行实现。

      #pragma once
      
      #include <iostream>
      #include <unistd.h>
      #include <pthread.h>
      #include <semaphore.h>
      #include <vector>
      
      #define NUM 8
      
      template<class T>
      class RingQueue
      {
      private:
      	//P操作
      	void P(sem_t& s)
      	{
      		sem_wait(&s);
      	}
      	//V操作
      	void V(sem_t& s)
      	{
      	    sem_post(&s);
      	}
      public:
      	RingQueue(int cap = NUM)
      		: _cap(cap), _p_pos(0), _c_pos(0)
      	{
      		_q.resize(_cap);
      		sem_init(&_blank_sem, 0, _cap); //blank_sem初始值设置为环形队列的容量
      		sem_init(&_data_sem, 0, 0); //data_sem初始值设置为0
      	}
      	~RingQueue()
      	{
      	sem_destroy(&_blank_sem);
      	sem_destroy(&_data_sem);
      	}
      	//向环形队列插入数据(生产者调用)
      	void Push(const T& data)
      	{
      		P(_blank_sem); //生产者关注空间资源
      		_q[_p_pos] = data;
      		V(_data_sem); //生产
      
      		//更新下一次生产的位置
      		_p_pos++;
      		_p_pos %= _cap;
      	}
      	//从环形队列获取数据(消费者调用)
      	void Pop(T& data)
      	{
      		P(_data_sem); //消费者关注数据资源
      		data = _q[_c_pos];
      		V(_blank_sem);
      
      		//更新下一次消费的位置
      		_c_pos++;
      		_c_pos %= _cap;
      	}
      private:
      	std::vector<T> _q; //环形队列
      	int _cap; //环形队列的容量上限
      	int _p_pos; //生产位置
      	int _c_pos; //消费位置
      	sem_t _blank_sem; //描述空间资源
      	sem_t _data_sem; //描述数据资源
      };
      

      相关说明:

      • 当不设置环形队列的大小时,我们默认将环形队列的容量上限设置为8。
      • 代码中的RingQueue是用vector实现的,生产者每次生产的数据放到vector下标为p_pos的位置,消费者每次消费的数据来源于vector下标为c_pos的位置。
      • 生产者每次生产数据后p_pos都会进行++,标记下一次生产数据的存放位置,++后的下标会与环形队列的容量进行取模运算,实现“环形”的效果。
      • 消费者每次消费数据后c_pos都会进行++,标记下一次消费数据的来源位置,++后的下标会与环形队列的容量进行取模运算,实现“环形”的效果。
      • p_pos只会由生产者线程进行更新,c_pos只会由消费者线程进行更新,对这两个变量访问时不需要进行保护,因此代码中将p_pos和c_pos的更新放到了V操作之后,就是为了尽量减少临界区的代码。

      为了方便理解,我们这里实现单生产者、单消费者的生产者消费者模型。于是在主函数我们就只需要创建一个生产者线程和一个消费者线程,生产者线程不断生产数据放入环形队列,消费者线程不断从环形队列里取出数据进行消费。

      #include "RingQueue.hpp"
      
      void* Producer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		sleep(1);
      		int data = rand() % 100 + 1;
      		rq->Push(data);
      		std::cout << "Producer: " << data << std::endl;
      	}
      }
      void* Consumer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		sleep(1);
      		int data = 0;
      		rq->Pop(data);
      		std::cout << "Consumer: " << data << std::endl;
      	}
      }
      int main()
      {
      	srand((unsigned int)time(nullptr));
      	pthread_t producer, consumer;
      	RingQueue<int>* rq = new RingQueue<int>;
      	pthread_create(&producer, nullptr, Producer, rq);
      	pthread_create(&consumer, nullptr, Consumer, rq);
      	
      	pthread_join(producer, nullptr);
      	pthread_join(consumer, nullptr);
      	delete rq;
      	return 0;
      }
      

      相关说明:

      • 环形队列要让生产者线程向队列中Push数据,让消费者线程从队列中Pop数据,因此这个环形队列必须要让这两个线程同时看到,所以我们在创建生产者线程和消费者线程时,需要将环形队列作为线程执行例程的参数进行传入。
      • 代码中生产者生产数据就是将获取到的随机数Push到环形队列,而消费者就是从环形队列Pop数据,为了便于观察,我们可以将生产者生产的数据和消费者消费的数据进行打印输出。

      生产者消费者步调一致

      由于代码中生产者是每隔一秒生产一个数据,而消费者是每隔一秒消费一个数据,因此运行代码后我们可以看到生产者和消费者的执行步调是一致的。
      Linux信号量

      生产者生产的快,消费者消费的慢

      我们可以让生产者不停的进行生产,而消费者每隔一秒进行消费。

      void* Producer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		int data = rand() % 100 + 1;
      		rq->Push(data);
      		std::cout << "Producer: " << data << std::endl;
      	}
      }
      void* Consumer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		sleep(1);
      		int data = 0;
      		rq->Pop(data);
      		std::cout << "Consumer: " << data << std::endl;
      	}
      }
      

      此时由于生产者生产的很快,运行代码后一瞬间生产者就将环形队列打满了,此时生产者想要再进行生产,但空间资源已经为0了,于是生产者只能在blank_sem的等待队列下进行阻塞等待,直到由消费者消费完一个数据后对blank_sem进行了V操作,生产者才会被唤醒进而继续进行生产。

      但由于生产者的生产速度很快,生产者生产完一个数据后又会进行等待,因此后续生产者和消费者的步调又变成一致的了。
      Linux信号量

      生产者生产的慢,消费者消费的快

      当然我们也可以让生产者每隔一秒进行生产,而消费者不停的进行消费。

      void* Producer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		sleep(1);
      		int data = rand() % 100 + 1;
      		rq->Push(data);
      		std::cout << "Producer: " << data << std::endl;
      	}
      }
      void* Consumer(void* arg)
      {
      	RingQueue<int>* rq = (RingQueue<int>*)arg;
      	while (true){
      		int data = 0;
      		rq->Pop(data);
      		std::cout << "Consumer: " << data << std::endl;
      	}
      }
      

      虽然消费者消费的很快,但一开始环形队列当中的数据资源为0,因此消费者只能在data_sem的等待队列下进行阻塞等待,直到生产者生产完一个数据后对data_sem进行了V操作,消费者才会被唤醒进而进行消费。

      但由于消费者的消费速度很快,消费者消费完一个数据后又会进行等待,因此后续生产者和消费者的步调又变成一致的了。
      Linux信号量

      信号量保护环形队列的原理

      在blank_sem和data_sem两个信号量的保护后,该环形队列中不可能会出现数据不一致的问题。

      因为只有当生产者和消费者指向同一个位置并访问时,才会导致数据不一致的问题,而此时生产者和消费者在对环形队列进行写入或读取数据时,只有两种情况会指向同一个位置:

      • 环形队列为空时。
      • 环形队列为满时。

      但是在这两种情况下,生产者和消费者不会同时对环形队列进行访问:

      • 当环形队列为空的时,消费者一定不能进行消费,因为此时数据资源为0。
      • 当环形队列为满的时,生产者一定不能进行生产,因为此时空间资源为0。

      也就是说,当环形队列为空和满时,我们已经通过信号量保证了生产者和消费者的串行化过程。而除了这两种情况之外,生产者和消费者指向的都不是同一个位置,因此该环形队列当中不可能会出现数据不一致的问题。并且大部分情况下生产者和消费者指向并不是同一个位置,因此大部分情况下该环形队列可以让生产者和消费者并发的执行

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.csdn.net/chenlong_cxy/article/details/123167179,作者:2021dragon,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:Linux学习(6)——挂载命令

      下一篇:Netty ChannelHandler之概述

      相关文章

      2025-05-19 09:04:53

      查看RISC-V版本的gcc中默认定义的宏

      查看RISC-V版本的gcc中默认定义的宏

      2025-05-19 09:04:53
      c++ , linux
      2025-04-15 09:19:05

      【Linux】systemV消息队列和信号量

      操作系统在内核建立一个队列,通信的两个进程AB以数据块的形式将需要发送的数据pushback到队列中,数据块是一个结构体,其中有字段标识该数据块是谁发送的,所以我们只要让不同的进程看到同一个队列就可以了

      2025-04-15 09:19:05
      信号量 , 消息 , 返回 , 队列
      2025-04-01 10:28:37

      小课2:筛选信息命令

      小课2:筛选信息命令

      2025-04-01 10:28:37
      bash , linux , 升序 , 服务器 , 运维
      2025-03-26 09:31:12

      shell脚本实现查询代码中定义了多少宏的方法

      shell脚本实现查询代码中定义了多少宏的方法

      2025-03-26 09:31:12
      bash , linux , 运维
      2025-03-26 08:57:33

      三种方法教你实现多线程交替打印ABC,干货满满!

      假设有三个线程,分别打印字母A、B、C。我们需要让这三个线程交替运行,按顺序打印出“ABCABCABC...”,直到打印一定次数或者满足某个条件。如何通过多线程的协调实现这个任务呢?这听起来简单,实际涉及到线程之间的同步和互斥,是我们学习多线程编程的一个很好的练习。

      2025-03-26 08:57:33
      Condition , wait , 信号量 , 多线程 , 线程
      2025-03-06 09:15:26

      spring cloud系统安装涉及的技术说明

      spring cloud系统安装涉及的技术说明

      2025-03-06 09:15:26
      docker , linux , 安装 , 技术
      2025-03-05 09:24:43

      【Python】使用numpy库实现Tic-Tac-Toe井字棋

      【Python】使用numpy库实现Tic-Tac-Toe井字棋

      2025-03-05 09:24:43
      linux , 右键 , 安装 , 打开 , 输入
      2025-02-25 08:57:55

      Java并发编程实战--计数信号量(Semaphore)

      计数信号量(Counting Semaphore)用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。计数信号量还可以用来实现某种资源池,或者对容器施加边界。

      2025-02-25 08:57:55
      信号量 , 容器 , 操作 , 资源
      2025-02-11 09:36:24

      【多线程】临界区,互斥量,信号量,条件变量,事件以及区别

      【多线程】临界区,互斥量,信号量,条件变量,事件以及区别

      2025-02-11 09:36:24
      mutex , 互斥 , 信号量 , 同步 , 线程
      2025-02-10 08:53:59

      【linux】linux C 程序 注册信号处理函数

      【linux】linux C 程序 注册信号处理函数  

      2025-02-10 08:53:59
      linux , 函数 , 注册 , 程序
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5225394

      查看更多

      最新文章

      查看RISC-V版本的gcc中默认定义的宏

      2025-05-19 09:04:53

      【Linux】systemV消息队列和信号量

      2025-04-15 09:19:05

      SSH port forwarding: bind: Cannot assign requested

      2024-11-20 09:46:57

      linux从入门到精通—— vim使用

      2024-11-06 07:16:52

      lrzsz——一款好用的文件互传工具

      2024-11-01 09:10:37

      linux查询磁盘是否做raid

      2024-10-29 09:41:48

      查看更多

      热门文章

      Linux crontab 任务误删恢复及备份步骤

      2023-03-20 08:19:07

      Linux 趣味小知识--软硬连接以及应用

      2023-04-23 09:32:49

      Linux常用命令总结

      2023-05-12 07:20:42

      linux-压缩与解压缩

      2023-05-15 10:03:24

      linux基本命令(47)——iostat命令

      2023-05-12 07:21:43

      Linux中文本搜索命令grep用法详解

      2023-06-07 07:36:41

      查看更多

      热门标签

      linux java python javascript 数组 前端 docker Linux vue 函数 shell git 节点 容器 示例
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      Elasticsearch非本地访问不了解决办法

      linux-shell入门-shell两种使用方式-shell的基本特性

      Ubuntu Linux 10.10试用体验(视频)

      Linux拓展之使用 shell 进行数学运算

      linux基本命令(45)——free命令

      Linux拓展之目录结构

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号