爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      【揭秘】ForkJoinPool全面解析

      首页 知识中心 软件开发 文章详情页

      【揭秘】ForkJoinPool全面解析

      2024-04-19 06:40:32 阅读次数:50

      任务,线程

      【揭秘】ForkJoinPool全面解析

      文章摘要

      ForkJoinPool是Java中的并行计算框架,其优点在于能够高效利用多核处理器资源,它采用分治策略将大任务拆分成小任务,通过工作窃取算法平衡负载,从而实现任务的并行执行和快速完成,此外,ForkJoinPool还提供了简洁的API和丰富的任务控制机制,支撑开发人员开发高效的并行代码。

      核心概念

      ForkJoinPool 是 Java 并发包 java.util.concurrent 中的一个类,它主要用于解决可以通过分治策略(Divide-and-Conquer)来并行处理的问题,这类问题通常可以被分解为更小的子问题,子问题和原问题在结构上相同或类似,只不过规模不同,通过递归地将问题分解为更小的部分,ForkJoinPool 可以利用多核处理器并行地处理这些子问题,然后再将结果合并起来,从而高效地解决问题。

      ForkJoinPool 的主要特点包括:

      1. 工作窃取算法(Work-Stealing Algorithm):当一个线程完成了自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,这有助于平衡负载和提高处理器的利用率。
      2. 递归分解与合并:非常适合处理可以递归分解的问题,如排序、搜索、数值计算等,开发者需要实现 ForkJoinTask 接口(通常使用它的子类 RecursiveAction 用于无返回值的任务,或使用 RecursiveTask 用于有返回值的任务)来定义问题的分解和结果的合并。
      3. 非阻塞设计:使用内部队列来管理任务,避免了使用锁或其他同步机制,从而减少了线程间的竞争和阻塞。
      4. 并行度控制:允许开发者控制并行执行的线程数量,可以根据处理器的核心数来优化性能。

      ForkJoinPool 适用于那些可以自然分解为多个独立子任务,并且这些子任务之间不需要太多通信或同步的问题,常见的使用场景包括并行数组处理(如排序、过滤、映射)、并行集合处理(如归约操作)、科学计算中的并行算法(如矩阵乘法、快速傅里叶变换)等。

      代码案例

      import java.util.concurrent.ForkJoinPool;  
      import java.util.concurrent.RecursiveAction;  
        
      public class ForkJoinSumCalculator {  
        
          public static void main(String[] args) {  
              // 定义一个需要求和的数组  
              int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};  
        
              // 创建一个ForkJoinPool实例,它将使用可用的所有处理器  
              ForkJoinPool pool = new ForkJoinPool();  
        
              // 创建一个ForkJoinTask来执行求和操作  
              SumTask task = new SumTask(numbers, 0, numbers.length);  
        
              // 提交任务到ForkJoinPool并等待它的完成  
              pool.invoke(task);  
        
              // 输出最终求和结果  
              System.out.println("Sum of all numbers: " + task.getSum());  
        
              // 关闭ForkJoinPool(虽然在这个例子中它并不是严格必要的,因为程序即将退出)  
              pool.shutdown();  
          }  
        
          // 定义一个继承自RecursiveAction的任务类  
          static class SumTask extends RecursiveAction {  
              private static final long serialVersionUID = 1L;  
        
              // 阈值,当数组长度小于这个值时,直接计算结果而不再拆分  
              private static final int THRESHOLD = 5;  
        
              private int[] numbers;  
              private int startIndex;  
              private int endIndex;  
              private int sum; // 存储子数组的和  
        
              public SumTask(int[] numbers, int startIndex, int endIndex) {  
                  this.numbers = numbers;  
                  this.startIndex = startIndex;  
                  this.endIndex = endIndex;  
              }  
        
              // 获取当前任务计算的和  
              public int getSum() {  
                  return sum;  
              }  
        
              @Override  
              protected void compute() {  
                  // 如果任务足够小,直接计算  
                  if (endIndex - startIndex <= THRESHOLD) {  
                      sum = calculateDirectly();  
                  } else {  
                      // 否则,拆分任务  
                      int middleIndex = startIndex + (endIndex - startIndex) / 2;  
                      SumTask leftTask = new SumTask(numbers, startIndex, middleIndex);  
                      SumTask rightTask = new SumTask(numbers, middleIndex, endIndex);  
        
                      // 递归执行任务  
                      invokeAll(leftTask, rightTask);  
        
                      // 合并结果  
                      sum = leftTask.getSum() + rightTask.getSum();  
                  }  
              }  
        
              // 直接计算子数组的和  
              private int calculateDirectly() {  
                  int localSum = 0;  
                  for (int i = startIndex; i < endIndex; i++) {  
                      localSum += numbers[i];  
                  }  
                  return localSum;  
              }  
          }  
      }
      

      在上面代码中,SumTask类有一个sum字段来存储计算的和,以及一个getSum方法来检索它,在compute方法中,如果任务的大小超过阈值,任务将被拆分为两个子任务,并且递归地执行,然后,将子任务的结果合并以计算总和,如果任务的大小小于或等于阈值,将直接计算子数组的和。

      核心API

      ForkJoinPool 提供了一个框架,用于将大任务分解成小任务,然后并行地执行这些小任务,最后再将结果合并起来,它提供的方法主要涉及到任务的提交、执行、管理和配置等方面,下面是一些常用方法的简要说明。

      构造方法

      1. ForkJoinPool(): 创建一个默认并行级别的 ForkJoinPool,通常使用可用的处理器数量作为并行级别。
      2. ForkJoinPool(int parallelism): 创建一个具有指定并行级别的 ForkJoinPool。

      任务提交

      1. invoke(ForkJoinTask<?> task): 同步执行指定的任务,并等待其完成。

      2. submit(ForkJoinTask<?> task): 异步提交一个任务以供执行,并返回一个表示该任务的 Future。

      3. execute(ForkJoinTask<?> task): 安排一个任务的执行,但不等待其完成。

      任务管理

      1. awaitQuiescence(long timeout, TimeUnit unit): 等待所有任务完成执行,或者直到超时。
      2. shutdown(): 可能启动有序关闭,在该过程中执行现有任务但不接受新任务。
      3. shutdownNow(): 试图停止所有正在执行的活动任务,暂停处理正在等待的任务,并返回等待执行的任务列表。
      4. isShutdown(): 如果此池已关闭或正在关闭,则返回 true。
      5. isTerminated(): 如果关闭后所有任务都已完成,则返回 true。
      6. awaitTermination(long timeout, TimeUnit unit): 请求关闭并等待所有任务完成执行,或者直到超时。

      获取任务结果

      1. 对于 RecursiveTask(有返回值的任务),通常会在调用任务的 join 方法时获取任务结果。

      配置和状态

      1. getParallelism(): 返回此 ForkJoinPool 的并行级别。
      2. getPoolSize(): 返回此 ForkJoinPool 中的活动线程估计数。
      3. getActiveThreadCount(): 返回此 ForkJoinPool 中当前活动的线程数。
      4. getRunningThreadCount(): 返回此 ForkJoinPool 中正在运行任务的线程数。
      5. getQueuedTaskCount(): 返回此 ForkJoinPool 工作队列中待处理的任务数估计值。
      6. getStealCount(): 返回从此 ForkJoinPool 中成功窃取的任务数估计值。

      核心总结

      【揭秘】ForkJoinPool全面解析

      ForkJoinPool是Java并行计算的利器,其优点在于能高效地将大任务拆成小任务,通过工作窃取机制充分利用多核处理器,加速任务执行,但它也有缺点,比如任务划分不均可能导致部分处理器闲置,且更适合计算密集型而非IO密集型任务,使用时,建议合理划分任务,保持任务均衡,同时注意异常处理和线程资源管理。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/bytegood/9454810,作者:程序员古德,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:Java命令行编译打包

      下一篇:【Java中的四种引用类型(强引用、软引用、弱引用、虚引用)及应用场景】

      相关文章

      2025-05-19 09:04:38

      mysql只有在任务处于完成状态才能运行

      mysql只有在任务处于完成状态才能运行

      2025-05-19 09:04:38
      MySQL , 任务 , 数据库 , 查询 , 状态
      2025-05-16 09:15:17

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17
      单例 , 线程 , 队列
      2025-05-14 10:07:38

      超级好用的C++实用库之互斥锁

      互斥锁是一种用于多线程编程的同步机制,其主要目的是确保在并发执行环境中,同一时间内只有一个线程能够访问和修改共享资源。

      2025-05-14 10:07:38
      CHP , Lock , 互斥 , 线程 , 释放 , 锁定
      2025-05-14 10:03:13

      超级好用的C++实用库之线程基类

      在C++中,线程是操作系统能够进行运算调度的最小单位。一个进程可以包含多个线程,这些线程共享进程的资源,比如:内存空间和系统资源,但它们有自己的指令指针、堆栈和局部变量等。

      2025-05-14 10:03:13
      Linux , void , Windows , 函数 , 操作系统 , 线程
      2025-05-14 10:03:13

      AJAX-事件循环(超详细过程)

      JS有一个基于事件循环的并发模型,事件循环负责执行代码、收集和处理事件以及执行队列中的子任务。

      2025-05-14 10:03:13
      代码 , 任务 , 出栈 , 异步 , 执行 , 调用 , 队列
      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      在高并发系统中,Redis 缓存是一种常见的性能优化方式。然而,缓存击穿问题也伴随着高并发访问而来。

      2025-05-14 10:02:48
      Redis , 互斥 , 数据库 , 线程 , 缓存 , 请求
      2025-05-14 10:02:48

      YARN与HBase任务

      YARN与HBase任务

      2025-05-14 10:02:48
      HBase , 任务 , 应用程序 , 资源 , 集群
      2025-05-14 09:51:15

      java怎么对线程池做监控

      对Java线程池进行监控是确保系统性能和稳定性的重要部分。监控线程池可以帮助我们了解线程池的状态,如当前活跃线程数、任务队列长度、已完成任务数等。

      2025-05-14 09:51:15
      Java , 方法 , 监控 , 示例 , 线程 , 队列
      2025-05-12 08:40:18

      如何向线程传递参数

      如何向线程传递参数

      2025-05-12 08:40:18
      传递 , 参数 , 封装 , 开启 , 线程
      2025-05-09 08:51:21

      notify和notifyall的区别

      notify和notifyall的区别

      2025-05-09 08:51:21
      notify , synchronized , 方法 , 线程 , 调用 , 释放
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5244132

      查看更多

      最新文章

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17

      超级好用的C++实用库之互斥锁

      2025-05-14 10:07:38

      AJAX-事件循环(超详细过程)

      2025-05-14 10:03:13

      超级好用的C++实用库之线程基类

      2025-05-14 10:03:13

      YARN与HBase任务

      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      2025-05-14 10:02:48

      查看更多

      热门文章

      Java线程同步synchronized wait notifyAll

      2023-04-18 14:15:05

      Android Priority Job Queue (Job Manager):线程任务的容错重启机制(二)

      2024-09-25 10:13:46

      操作系统中的线程种类

      2023-04-24 11:27:18

      Android Priority Job Queue (Job Manager):多重不同Job并发执行并在前台获得返回结果(四)

      2023-04-13 09:54:33

      实现远程线程DLL注入

      2023-05-04 08:57:15

      【Java并发编程】之十:使用wait/notify/notifyAll实现线程间通信的几点重要说明

      2023-04-24 11:25:19

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      线程和进程的区别及在操作系统中的实现

      java异步判断线程池所有任务是否执行完

      进程、线程与协程:并发执行的三种重要概念与应用

      线程--线程创建与终止

      【Linux】无锁队列kfifo --研读(适合一读一写线程并发操作)

      线程的介绍(概念、作用)

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号