爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      抽取文档主题之gensim实现

      首页 知识中心 其他 文章详情页

      抽取文档主题之gensim实现

      2024-05-28 08:41:37 阅读次数:42

      python,机器学习

      抽取文档主题之gensim实现

      抽取文档主题之gensim实现

      抽取文档主题之gensim实现

      示例代码:

      import jieba
      import pandas as pd
      from gensim import corpora, models
      from gensim.models.ldamodel import LdaModel
      
      raw = pd.read_table('./金庸-射雕英雄传txt精校版.txt', names=['txt'], encoding="GBK")
      
      
      #  章节判断用变量预处理
      def m_head(tmpstr):
          return tmpstr[:1]
      
      
      def m_mid(tmpstr):
          return tmpstr.find("回 ")
      
      
      raw['head'] = raw.txt.apply(m_head)
      raw['mid'] = raw.txt.apply(m_mid)
      raw['len'] = raw.txt.apply(len)
      
      #  章节判断
      chapnum = 0
      for i in range(len(raw)):
          if raw['head'][i] == "第" and raw['mid'][i] > 0 and raw['len'][i] < 30:
              chapnum += 1
          if chapnum >= 40 and raw['txt'][i] == "附录一:成吉思汗家族":
              chapnum = 0
          raw.loc[i, 'chap'] = chapnum
      
      #  删除临时变量
      del raw['head']
      del raw['mid']
      del raw['len']
      
      rawgrp = raw.groupby('chap')
      chapter = rawgrp.agg(sum)  # 只有字符串的情况下,sum函数自动转为合并字符串
      chapter = chapter[chapter.index != 0]
      # print(chapter)
      
      #  设定分词及请理停用词函数
      stop_list = list(pd.read_csv('./停用词.txt', names=['w'], sep='aaa', encoding='utf-8').w)
      # print(stop_list)
      
      
      #  jeiba分词
      def m_cut(intxt):
          return [w for w in jieba.cut(intxt) if w not in stop_list and len(w) > 1]
      
      
      #  文档预处理,提取主题词
      chap_list = [m_cut(w) for w in chapter.txt]
      
      #  生成文档对应的字典和bow稀疏向量
      dictionary = corpora.Dictionary(chap_list)
      corpus = [dictionary.doc2bow(text) for text in chap_list]  # 仍为list in list
      
      tfidf_model = models.TfidfModel(corpus)  # 建立TF-IDF模型
      corpus_tfidf = tfidf_model[corpus]  # 对所需文档计算TF-IDF
      
      ldamodel = LdaModel(corpus_tfidf, id2word=dictionary, num_topics=10, passes=5)
      
      #  列出最重要的前若干个主题
      a = ldamodel.print_topic(6)
      print(a)
      
      #  计算各语料的LDA模型值
      corpus_lda = ldamodel[corpus_tfidf]  # 此处应当使用和模型训练时相同类型的矩阵
      
      for doc in corpus_lda:
          print(doc)
      
      b = ldamodel.get_topics()
      print(b)
      
      #  检索和文本内容最接近的主题
      query = chapter.txt[1]  # 检索和第一章最解近的主题
      query_bow = dictionary.doc2bow(m_cut(query))  # 频数向量
      query_tfidf = tfidf_model[query_bow]  # TF-IDF向量
      print('转换后:', query_tfidf[:10])
      
      c = ldamodel.get_document_topics(query_tfidf)  # 需要输入和文档对应的bow向量
      print(c)
      
      #  检索和文本内容最接近的主题
      d = ldamodel[query_tfidf]
      print(d)

      代码存在一点小问题,精度达不到。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.csdn.net/weixin_44799217/article/details/115666436,作者:IT之一小佬,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:使用pdfplumber过程中,出现AttributeError: ‘LTChar‘ object has no attribute ‘graphicstate错误

      下一篇:某教程学习笔记(一):21、后渗透攻击

      相关文章

      2025-04-14 09:24:23

      python打印宝塔代码

      python打印宝塔代码

      2025-04-14 09:24:23
      python
      2025-04-09 09:16:56

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      python四种抽样方法的使用:随机抽样、聚类抽样、系统抽样、分层抽样

      2025-04-09 09:16:56
      python , 代码 , 方法 , 机器学习 , 示例
      2025-04-09 09:16:42

      视频 | Python测试开发之调试print代码实例

      视频 | Python测试开发之调试print代码实例

      2025-04-09 09:16:42
      debug , log4j , logback , logging , python
      2025-04-09 09:16:42

      python简单介绍及基础知识(一)

      编程语言,是用来实现某种功能的编写给计算机读取和执行的语言

      2025-04-09 09:16:42
      print , python , 下划线 , 变量 , 变量名 , 编程语言 , 语言
      2025-04-09 09:16:00

      使用Python扩展PAM(part 2)

      在上篇part1 中编译的pam_python.so可以用Python代码进行一些额外的验证操作。动态密码,虚拟账号,都是可行的,只要编写的python鉴权脚本符合相应的PAM规范即可使用。

      2025-04-09 09:16:00
      python , 使用 , 密码 , 配置
      2025-04-09 09:13:27

      1行Python代码,把Excel转成PDF,python-office功能更新~

      1行Python代码,把Excel转成PDF,python-office功能更新~

      2025-04-09 09:13:27
      Excel , pdf , python , 代码 , 程序员
      2025-04-09 09:13:17

      python性能测试之pyperformance

      python性能测试之pyperformance

      2025-04-09 09:13:17
      json , python , Python , 性能 , 文档 , 测试
      2025-04-09 09:13:17

      IronPython 与 c# 交互之导入Python模块的两种方法

      当我们要在C#中调用python时,有时候需要用到python里的一些函数,比如进行一些数学运算,开方,取对数,这个时候我们需要用到python里的math模块(类似C#的命名空间,但概念不完全一样).

      2025-04-09 09:13:17
      python , 函数 , 导入 , 方法 , 模块
      2025-04-07 10:28:48

      一篇文章带你剖析Python 字节流处理神器struct

      一篇文章带你剖析Python 字节流处理神器struct

      2025-04-07 10:28:48
      python
      2025-04-07 10:28:48

      如何把一个python列表(有很多个元素)变成一个excel表格的第一列?

      如何把一个python列表(有很多个元素)变成一个excel表格的第一列?

      2025-04-07 10:28:48
      python , 数据
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5248269

      查看更多

      最新文章

      【python基础】学习路线

      2025-03-11 09:34:18

      python实战三:使用循环while模拟用户登录

      2025-02-13 08:28:59

      python递归遍历路径下的所有文件和文件夹

      2025-02-11 09:36:57

      仅用pygame+python实现植物大战僵尸-----完成比完美更重要

      2024-12-11 06:14:38

      Flask 实现用户登录功能的完整示例:前端与后端整合(附Demo)

      2024-12-10 07:14:31

      python——偏函数的使用

      2024-11-25 09:16:33

      查看更多

      热门文章

      python list转dict

      2023-04-18 14:16:25

      定义一个函数,接收三个参数返回一元二次方程

      2023-02-13 07:59:59

      python 倒排索引(Inverted Index)

      2023-04-18 14:16:25

      python取两个列表的并集、交集、差集

      2023-04-18 14:17:22

      解决numpy报错UFuncTypeError: Cannot cast ufunc ‘add‘ output from dtype(‘x‘) to dtype(‘x‘)

      2023-04-18 14:17:10

      python使用xlwt创建与保存excel文件

      2023-04-18 14:17:10

      查看更多

      热门标签

      linux java python javascript 数组 前端 docker Linux vue 函数 shell git 节点 容器 示例
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      python-函数的定义与调用

      ubuntu18.04安装anaconda后终端出现base字样

      linux-权限更改-符号更改法-rwx

      Django REST framwork-11-权限验证

      11 python - if else / elif / if嵌套

      python中gevent库用法详解(协程)

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号