爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Linux网络编程IO管理

      首页 知识中心 软件开发 文章详情页

      Linux网络编程IO管理

      2024-12-05 08:50:14 阅读次数:19

      kernel,select,socket,句柄,进程,阻塞

      网络 IO 涉及到两个系统对象,一个是用户空间调用 IO 的进程或者线程,一个是内核空间的内核系统,比如发生 IO 操作 read 时,它会经历两个阶段:

      1. 等待内核协议栈的数据准备就绪;
      2. 将内核中的数据拷贝到用户态的进程或线程中。
        由于在以上两个阶段产出的不同情况,就出现了多种网络 IO 管理方法,即网络 IO 模型。

      五种网络 IO 模型

      阻塞 IO(blocking IO)

      在 Linux 中,默认情况下所有 socket 都是 blocking,一个典型的读操作流程如下:

      Linux网络编程IO管理

      当用户进程调用了 read 这个系统调用,kernel 就开始了 IO 的第一个阶段:准备数据。对于 network io 来说,很多时候的数据是没有就绪的(比如很多时候还没有收到一个完整的数据包),那么整个进程就会被阻塞;当内核将数据准备好了,才会将数据从内核空间拷贝到用户态内存,然后 kernel 返回结果,用户态进程才会解除阻塞继续运行。
      所以,block io 在 io 执行的两个阶段都被 block 了(数据准备和数据拷贝)。所有程序员解除网络编程都是从 listen recv send,开始的,这些都是阻塞型接口。可以很方便地构建一个服务器-客户机模型,下面是一个简单的模型结构:

      Linux网络编程IO管理

      //接受缓冲区大小
      #define BUFFER_LENGTH       1024
      
      int main()
      {
          int sockfd = socket(AF_INET, SOCK_STREAM, 0);
      
          struct sockaddr_in servaddr;
          memset(&servaddr, 0, sizeof(struct sockaddr_in));
          servaddr.sin_family = AF_INET;
          servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
          servaddr.sin_port = htons(9999);
      
          if(-1 == bind(sockfd, (struct sockaddr*)&servaddr, sizeof(struct sockaddr)))
          {
              printf("bind failed: %s\n", strerror(errno));
              return -1;
          }
      
          listen(sockfd, 10);
      
          struct sockaddr_in clientaddr;
          socklen_t len = sizeof(clientaddr);
          int clientfd = accept(sockfd, (struct sockaddr*)&clientaddr, &len);
          printf("accept\n");
      
          while(1)
          {
              char buffer[BUFFER_LENGTH] = {0};
              int ret = recv(clientfd, buffer, BUFFER_LENGTH, 0);
              printf("ret: %d, buffer: %s\n", ret, buffer);
              send(clientfd, buffer, ret, 0);
          }
      }
      
      

      大部分的 socket 接口都是阻塞型的。所谓的阻塞型接口是指系统调用不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或超时出错时才返回。
      这些阻塞的接口给网络编程带来了很大的问题,如在调用 send() 的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或相应任何网络请求。
      一个简单的改进方案就是在服务器端使用多线程(或多进程)。让每个连接都有独立的线程/进程,这样任何一个链接的阻塞都不会影响他的连接。具体使用多进程还是多线程没有一个特定的模式。传统意义上,进程的开销要远大于线程,所以要同时为较多的客户机提供服务,则不推荐多进程;如果单个服务执行体需要消耗较多的 CPU 资源,比如需要进行大规模或长时间的数据运算或文件访问,则进程较为安全。通常,使用 pthread_create() 创建新线程,fork() 创建新进程。
      我们假设对上述服务器/客户机模型提出更高的要求,即让服务器同时为多个客户机提供服务,就有了以下模型。

      Linux网络编程IO管理

      #define BUFFER_LENGTH       1024
      
      //线程函数
      void *client_thread(void *arg)
      {
          int clientfd = *(int*)arg;
      
          while(1)
          {
              char buffer[BUFFER_LENGTH] = {0};
              int ret = recv(clientfd, buffer, BUFFER_LENGTH, 0);
      
              if(ret == 0)
              {
                  close(clientfd);
                  break;
              }
              printf("ret: %d, buffer: %s\n", ret, buffer);
      
              send(clientfd, buffer, ret, 0);
          }
      }
      
      int main()
      {
          int sockfd = socket(AF_INET, SOCK_STREAM, 0);
      
          struct sockaddr_in servaddr;
          memset(&servaddr, 0, sizeof(struct sockaddr_in));
          servaddr.sin_family = AF_INET;
          servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
          servaddr.sin_port = htons(9999);
      
          if(-1 == bind(sockfd, (struct sockaddr*)&servaddr, sizeof(struct sockaddr)))
          {
              printf("bind failed: %s\n", strerror(errno));
              return -1;
          }
      
          listen(sockfd, 10);
      
          struct sockaddr_in clientaddr;
          socklen_t len = sizeof(clientaddr);
          while(1)
          {
              int clientfd = accept(sockfd, (struct sockaddr*)&clientaddr, &len);
              pthread_t threadid;
              //将clientfd昨晚参数传入线程
              pthread_create(&threadid, NULL, client_thread, &clientfd);
          }
      }
      
      

      在上面的模型中,主线程持续等待客户端的连接请求,如果有连接,则创建新线程,并在新线程中提供和前面相同的服务。
      很多初学者可能不明白为何一个 socket 可以 accept 多次。实际上 socket 的设计者
      可能特意为多客户机的情况留下了伏笔,让 accept () 能够返回一个新的 socket。下面是
      Accept 接口的原型:

      int accept(int s, struct sockaddr *addr, socklen_t *addrlen);
      

      输入参数 s 是从 socket(),bind() 和 listen() 中沿用下来的 socket() 句柄值。执行完 bind() 和 listen() 后,操作系统会在指定的端口处监听所有连接请求,如果有请求,则将该连接请求加入请求队列。调用 accept() 接口正是从 socket s 的请求队列抽取第一个连接信息,创建一个与 s 同类的新 socket 返回句柄。新的 socket 句柄即后续 read() 和 recv() 的输入参数。如果请求队列当前没有请求,则 accept() 将进入阻塞状态直到有请求进入队列。
      上述多线程服务器模型几乎完美解决了多个客户机提供问答服务的要求,但其实并不尽然。如果要同时相应成百上千的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界相应效率,而线程与进程本省也容易进入假死状态。
      对于可能面临的同时出现的上千次次甚至上万次的客户端请求,“线程池”和“连接池”等池化组件或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模服务请求,但是对面大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来解决这个问题。

      非阻塞 IO(non-blocking IO)

      Linux 下,可以通过设置 socket 使其变为 non-blocking。当对一个 non-blocking socket 执行读操作时,流程如下:

      Linux网络编程IO管理

      int main()
      {
          int sockfd = socket(AF_INET, SOCK_STREAM, 0);
      
          struct sockaddr_in servaddr;
          memset(&servaddr, 0, sizeof(struct sockaddr_in));
          servaddr.sin_family = AF_INET;
          servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
          servaddr.sin_port = htons(9999);
      
          if(-1 == bind(sockfd, (struct sockaddr*)&servaddr, sizeof(struct sockaddr)))
          {
              printf("bind failed: %s", strerror(errno));
              return -1;
          }
      
          listen(sockfd, 10);
          // sleep(10);
      
          printf("sleep\n");
          int flags = fcntl(sockfd, F_GETFL, 0);
          flags |= O_NONBLOCK;
          fcntl(sockfd, F_SETFL, flags);
      
          struct sockaddr_in clientaddr;
          socklen_t len = sizeof(clientaddr);
      
          while(1)
          {
              int clientfd = accept(sockfd, (struct sockaddr*)&clientaddr, &len);
              printf("accept\n");
          }
      }
      
      

      从图中看出,当用户发出 read 操作时,如果 kernel 中的数据还没有准备好,那么它并不会 block 用户进程,而是立刻返回一个 error。从用户的角度来讲,它发起一个 read 操作后,并不需要等待,而是马上得到一个结果。用户进程判断结果是一个 error 时,他就知道数据还没准备好,于是它可以再次发送 read 操作。一旦 kernel 中的数据准备好了,并且再次收到用户进程的 system call,那么它马上就将数据拷贝到用户内存,然后返回,所以,在非阻塞 IO 中,用户进程其实是不需要主动询问 kernel 数据准备好了没有。
      在非阻塞状态下,recv() 接口在被调用后立刻返回,返回值代表了不同的含义,如在上面的例子中:

      • recv()返回值大于 0 ,表示接受数据完毕,返回值即是接受到的字节数;
      • recv()返回 0 ,表示连接已经正常断开;
      • recv()返回 1 ,且 errno 等于 EAGAIN ,表示 recv 操作还没执行完成;
      • recv()返回 1 ,且 errno 不等于 EAGAIN ,表示 recv 操作遇到系统错误 errno 。

      非阻塞的接口相比阻塞接口的显著差异在于,在被调用之后立刻返回。使用如下的函数可以将某句柄 fd 设为非阻塞状态。

      fcntl(fd, F_SETFL, O_NONBLOCK);
      

      多路复用 IO(IO multiplexing)

      这种模型的好处在于,单个 process 可以同时处理多个网络连接的 IO。他的基本原理就是 select/epoll 这个 function 会不断轮询所负责的所有 socket,当某个 socket 有数据到达,就通知用户进程。流程如下:

      Linux网络编程IO管理

      当用户进程调用了 select,那么整个进程就会被 block,而同时,kernel 会“监视”所有 select 负责的 socket,当任何一个 socket 中的数据准备好了,select 就会返回。这个时候用户进程再调用 read 操作,将数据从 kernel 拷贝到用户进程。
      在多路复用模型中,对于每一个 socket,一般都会设置成 non-blocking,但是,如上图所示,其实整个用户的 process 都是 block 的。只不过 process 是被 select 这个函数 block,而不是被 socket IO 给 block。因此 select() 与非阻塞 IO 类似。
      大部分 Unix/Linux 都支持 select 函数,该函数用于探测多个文件句柄的状态变化。下面给出 select 接口的原型:

      FD_ZERO(int fd, fd_set* fds)
      FD_SET(int fd, fd_set* fds)
      FD_ISSET(int fd, fd_set* fds)
      FD_CLR(int fd, fd_set* fds)
      int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)
      

      这里,fd_set 类型可以简单的理解为按 bit 位标记的句柄队列,例如要在某 fd_set 中标记一个值为 16 的句柄,则该 fd_set 的第 16 个 bit 位被标记为 1。具体的位置、验证可使用 FD_SET、FD_ISSET 等宏实现。在 select() 函数中,readfd、writefds 和 exceptfds 同时作为输入参数和输出参数。如果输入的 readfds 标记了 16 号句柄,则 select() 将检测 16 号句柄是否可读。在 select() 返回后,可以通过检查 readfds 是否标记 16 号句柄来判断“可读”事件是否发生。另外,用户可以设置 timeout 时间。
      这里需要指出的是,客户端的一个 connect() 操作,将在服务器端激发一个“可读事件”,所以 select() 可能探测来自客户端的 connect() 行为。
      上述模型中,最关键的地方是如何动态维护 select() 的三个参数,readfds、writefds 和 exceptfds。作为输入参数,readfds 应该标记所有的需要探测的“可读事件”的句柄,其中永远包括那个探测 connect() 的那个“母”句柄(使用 FD_SET() 标记)。
      作为输出参数,readfds、writefds 和 exceptfds 中中保存了所有 select 捕捉到的所有事件的句柄值。程序员需要检查的所有的标记位(使用 FD_ISSET() 检查),以确定到底那些句柄发生了事件。
      在上面的一问一答模式中,如果 select() 发现某句柄捕捉到可“可读事件”,服务器程序应及时做 recv() 操作,并且根据接收到的数据准备好发送数据,并将对应的句柄值加入 writefds,准备下一次“可写事件”的 select() 探测。探测。同样,如果 select() 发现某句柄捕捉到“可写事件”,则程序应及时做 send() 操作,并准备好下一次的可读事件探测准备。
      这种模型的特征在于每一个执行周期都会探测一次或一组事件,一个特定的事件会触发某个特定的响应。我们可以将这种模型叫做“事件驱动模型”。
      但这个模型依旧有着很多问题。首先 Select () 接口并不是实现事件驱动的最好选择。因为当需要探测的句柄值较大时, select () 接口本身需要消耗大量时间去轮询各个句柄。很多操作系统提供了更为高效的接口,如 linux 提供了 epoll BSD 提供了 kqueue Solaris 提供了 /dev/poll 。如果需要实现更高效的服务器程序,类似 epoll 这样的接口更被推荐。遗憾的是不同的操作系统特供的 epoll 接口有很大差异,所以使用类似于 epoll 的接口实现具有较好跨平台能力的服务器会比较困难。

      异步 IO(Asynchronous IO)

      Linux网络编程IO管理

      当用户进程发起 read 操作后,就立刻做其他的事情。另一方面,从 kernel 的角度,当他收到一个 asynchronous read 后,它会立刻返回,所以不会对用户进程产生任何 block。然后,kernel 会等数据准备好之后,将数据拷贝到用户空间内存,当一切都完成后,kernel 会给用户进程发送一个 signal 告诉他 read 操作完成了。

      到目前为止,已经介绍了四个 IO 模型。现在来回答最初的几个问题:blocking 和 non-blocking 的区别在哪里?synchronous IO 和 asynchronous IO 的区别在哪里?

      先回答简单的:blocking 和 non-blocking。调用 blocking IO 会一直 block 进程直到操作完成,而 non-blocking IO 在 kernel 还在准备数据的情况下会直接返回。
      synchronous 和 asynchronous 的区别在于 synchronous 在进行 IO opration 的时候回将 process block 但是 asynchronous 不会。所以前面介绍的 blocking IO,non-blocking IO 和 IOmultiplexing 都是 synchronous。但是这时候就会有人问,non-blocking 不是不会 block process 吗。这里有一个需要注意的地方,non-blocking 只是在执行 read 这个系统调用的情况下 kernel 会直接返回,但是在 kernel 准备好数据拷贝到 application 的时候,依然会对 process block。所以她在 IO 操作上依然有阻塞的部分。而 asynchronous IO 不一样,当进程发起 IO 操作信号后直接返回不理睬,直到 kernel 发出 IO 操作完成的信号,中间没有任何阻塞。

      信号驱动 IO(signal driven IO, SIGIO)

      在我们安装信号函数之后,看进程继续运行并不阻塞。数据准备好之后,进程会收到一个 SIGIO 信号,可以在信号处理函数中调用 IO 操作函数处理数据。我们可以在信号处理函数中调用 read 读取数据,并通知主循环数据准备好;也可以立刻通知主循环让它读取数据。这种模型的优势在于等待数据包到达器件,可以继续执行,不被阻塞。免去了 select 的阻塞与轮询,当有 socket 活跃时,由 handler 处理。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://lennlouis.blog.csdn.net/article/details/141950941,作者:小狮子安度因,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:Linux源码阅读笔记-USB设备驱动架构

      下一篇:使用Java实现负载均衡

      相关文章

      2025-05-16 09:15:10

      Linux系统基础-进程信号超详细讲解

      Linux系统基础-进程信号超详细讲解

      2025-05-16 09:15:10
      kill , 信号 , 命令 , 进程
      2025-05-14 10:02:58

      Linux top 命令使用教程

      Linux top 是一个在Linux和其他类Unix 系统上常用的实时系统监控工具。它提供了一个动态的、交互式的实时视图,显示系统的整体性能信息以及正在运行的进程的相关信息。

      2025-05-14 10:02:58
      CPU , 信息 , 内存 , 占用 , 备注 , 进程
      2025-05-13 09:51:29

      ogg在启动应用进程时报错OGG-00412

      ogg在启动应用进程时报错OGG-00412

      2025-05-13 09:51:29
      ogg , OGG , 时报 , 进程
      2025-05-13 09:51:17

      无法启动ogg配置好的抓取以及投递进程

      无法启动ogg配置好的抓取以及投递进程

      2025-05-13 09:51:17
      ogg , 启动 , 抓取 , 进程
      2025-05-13 09:50:48

      查找正在执行的select以及dml语句的相关信息

      查找正在执行的select以及dml语句的相关信息

      2025-05-13 09:50:48
      select , session , sql , SQL , 语句
      2025-05-13 09:50:48

      error: "net.bridge.bridge-nf-call-ip6tables" is an unknown key

      error: "net.bridge.bridge-nf-call-ip6tables" is an unknown key

      2025-05-13 09:50:48
      core , kernel
      2025-05-13 09:49:27

      mysql一些小知识点

      mysql 使用的是三值逻辑:TRUE FALSE UNKNOWN。

      2025-05-13 09:49:27
      left , mod , mysql , null , select , user
      2025-05-13 09:49:19

      内置变量_其他相关

      内置变量_其他相关

      2025-05-13 09:49:19
      参数 , 基础知识 , 实践 , 小结 , 脚本 , 进程
      2025-05-09 08:51:09

      【Linux 从基础到进阶】进程管理与性能调优

      在 Linux 系统中,进程是执行中的程序实例。有效的进程管理和性能调优可以提升系统的响应速度和资源利用率。本文将介绍进程管理的基本概念、常用命令,以及性能调优的最佳实践,适用于 CentOS 和 Ubuntu 系统。

      2025-05-09 08:51:09
      CPU , 性能 , 管理 , 调优 , 进程
      2025-05-07 09:08:16

      MFC如何打开和关闭进程、动态获取进程号、关闭自身进程

      进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,每一个进程都是一个实体有属于自己的地址控件,进程也是一个执行的程序

      2025-05-07 09:08:16
      函数 , 句柄 , 返回值 , 进程
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5275499

      查看更多

      最新文章

      【Linux】Java进程CPU 使用率过高问题排查

      2025-04-22 09:40:08

      软件设计师教程(第5版)第4章 操作系统知识(更新中)

      2025-04-15 09:25:57

      ThreadPoolExecutor线程池的创建

      2025-04-09 09:17:07

      Java线程的基础概念介绍(结合代码说明)

      2025-04-09 09:16:00

      多并发的高实时的订单查询的性能问题(进程内共享数据)

      2025-04-09 09:15:47

      并发编程——进程——Process对象的属性和方法

      2025-03-31 08:49:25

      查看更多

      热门文章

      讲透Go中的并发接收控制结构select

      2023-02-10 10:10:49

      Pyhton编程:socket实现ssh通讯

      2023-02-24 10:15:28

      ldd3学习之十二(3):高级字符驱动程序操作--poll/select、异步通知

      2023-05-11 06:05:48

      一个简单的socket套接字服务器,Python

      2023-04-13 09:31:09

      C#进程通信

      2023-04-11 10:47:12

      驱动开发:内核监控进程与线程回调

      2024-07-01 01:32:23

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      joblib多线程、多进程学习案例(三)

      驱动开发:内核取应用层模块基地址

      进程管理(1.0)

      进程解析(JavaEE初阶)

      线程、进程、协程

      并发编程——进程——Process对象的属性和方法

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号