爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      首页 知识中心 软件开发 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      2025-01-14 09:12:24 阅读次数:15

      MAX,每个,结点,节点

      文心一言 VS 讯飞星火 VS chatgpt (53)-- 算法导论6.2 5题

      六、证明:对一个大小为 n的堆,MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ign)。(提示对于n个结点的堆,可以通过对每个结点设定恰当的值,使得从根结点到叶结点路径上的每个结点都会递归调用 MAX-HEAPIFY。)

      文心一言:

      要证明 MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ig(n)),我们需要在大小为 n 的堆上构造一个特定的情况,使得每个节点都需要进行 MAX-HEAPIFY 操作,并且每个操作的运行时间都是 O(log n)。

      我们可以将堆的根节点设置为一个较大的值,例如 n,然后将每个节点的值设置为其左右孩子的最大值加上一个较小的值,例如 1。这样,每个节点的值都大于其左右孩子,因此每个节点都需要进行 MAX-HEAPIFY 操作。

      现在我们来分析 MAX-HEAPIFY 在这个特定情况下的运行时间。对于每个节点 i,我们将其值设为 max(i, i2, i2+1)。由于 i 大于其左右孩子,因此 i 的左右孩子中至少有一个节点的值为 max(i2, i2+1)。因此,在 MAX-HEAPIFY 操作中,我们需要比较 i 的值与其左右孩子的值,以确定 i 是否需要交换位置。由于每个节点的值都是其左右孩子的最大值加上一个较小的值,因此每个节点的值的范围都在 [2, 3n-1] 之间。因此,我们可以将每个节点的值表示为一个二进制数,其中最高位表示节点是否大于其左孩子,次高位表示节点是否大于其右孩子。这样,我们可以使用二分查找算法在 O(log n) 的时间内找到最大值,并进行交换操作。

      因此,在这个特定情况下,每个节点都需要进行 MAX-HEAPIFY 操作,并且每个操作的运行时间都是 O(log n)。由于共有 n 个节点,因此 MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ig(n))。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      讯飞星火:

      首先,我们需要了解MAX-HEAPIFY的工作原理。MAX-HEAPIFY是一个用于调整堆结构的算法,它将一个堆从根结点开始向下调整,使得每个子结点的值都大于或等于其左右子结点的值。这样,堆的最大值总是在根结点处。

      现在我们来证明对一个大小为n的堆,MAX-HEAPIFY的最坏情况运行时间为Ω(Ign)。

      假设我们有一个大小为n的堆,我们可以通过以下步骤进行MAX-HEAPIFY操作:

      1.从最后一个非叶子结点(即第n/2个结点)开始向上遍历,找到最小值。

      2.将该最小值与当前根结点交换。

      3.重新调整堆结构,使得新的根结点下的子树满足最大堆性质。

      我们可以将这个过程看作是对每个非叶子结点执行一次MAX-HEAPIFY操作。由于每个非叶子结点最多被访问一次,所以最坏情况下,我们需要对每个非叶子结点执行MAX-HEAPIFY操作。

      接下来,我们计算每次MAX-HEAPIFY操作的时间复杂度。对于一个大小为n的堆,每个非叶子结点最多有n/2个子结点。因此,每次MAX-HEAPIFY操作最多需要遍历n/2次。在最坏情况下,我们从最后一个非叶子结点开始向上遍历,所以每次遍历的时间复杂度为O(logn)。

      由于最坏情况下我们需要对每个非叶子结点执行MAX-HEAPIFY操作,所以总时间复杂度为O(nlogn)。因此,对一个大小为n的堆,MAX-HEAPIFY的最坏情况运行时间为Ω(Ign)。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      华为盘古:

      360智脑:

      首先考虑最坏情况下堆的大小为 O(logn),此时每次插入或删除操作都可以将堆大小减1。因此,最坏情况下需要进行 Ign = logn 次堆化操作和 logn 次重新平衡操作。

      假设当前堆中所有节点的值都小于等于堆顶节点的值。为了进行最大堆化操作,我们需要将当前堆中的所有节点重新调整为最大堆。这涉及到对堆顶节点、左子树、右子树分别进行最大堆化操作。因此,最坏情况下需要执行 O(logn) 次最大堆化操作。

      对于一个大小为 n 的堆,最多需要进行 logn 次最大堆化操作才能将堆调整为最大堆。因此,在最坏情况下,MAX-HEAPIFY 的运行时间将是 Ω(Ign)。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      chatglm:

      要证明 MAX-HEAPIFY 在一个大小为 n 的堆上的最坏情况运行时间为 Ω(Ign),我们可以通过对堆中的每个节点设定恰当的值,使得从根节点到叶节点路径上的每个节点都会递归调用 MAX-HEAPIFY。

      具体地,我们可以按照以下步骤来设定节点的值:

      1.首先,我们将堆看作是一棵完全二叉树,其中每个节点的值都等于它的子节点的最大值(如果它有子节点的话)。

      2.对于每个节点,我们设定一个值 X,使得 X = max(x, y),其中 x 和 y 分别是该节点的两个子节点的值(如果它有子节点的话)。

      3.然后,我们依次对每个节点调用 MAX-HEAPIFY 函数,并设置它的值等于它的子节点的最大值(如果它有子节点的话)。

      4.最后,我们发现每个节点的值都已经被设定为了它的子节点的最大值,因此我们可以直接返回堆的最大值,而不需要再进行任何计算。

      由于堆是一棵完全二叉树,因此我们可以通过对每个节点递归地调用 MAX-HEAPIFY 函数,来计算从根节点到叶节点路径上的每个节点的最大值。由于每次调用 MAX-HEAPIFY 函数的时间复杂度为 O(log n),因此整个过程的时间复杂度为 O(n log n)。

      另一方面,由于堆的大小为 n,因此我们可以通过直接返回堆的最大值,来计算从根节点到叶节点路径上的每个节点的最大值。这种方法的时间复杂度为 O(n)。

      因此,我们可以得出结论,MAX-HEAPIFY 在一个大小为 n 的堆上的最坏情况运行时间为 Ω(n)。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      通义千问:

      证明:对于一个大小为 n 的有序堆,我们可以使用堆排序的思想将其转化为一个满足 MAX-HEAP 的二叉堆。具体地,我们可以将堆顶元素与堆的尾元素交换,然后将其他元素插入到堆中,以满足 MAX-HEAP 的定义。这样,我们就得到了一个满足 MAX-HEAP 的二叉堆。

      对于二叉堆中的每个结点,我们都可以进行一次 MAX-HEAPIFY 操作,以使得其值最大。具体地,我们可以将该结点与其左右子节点进行比较,如果左子节点的值大于该结点,则交换它们的值;如果右子节点的值大于该结点,则交换它们的值。这样,每个结点最终都会被排列在一个满足 MAX-HEAP 的二叉堆中。

      因此,对于一个大小为 n 的有序堆,MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ign)。这是因为每个结点最多被交换了一次,并且每次交换都会使得堆的状态更加满足 MAX-HEAP 的定义。因此,最坏情况下,MAX-HEAPIFY 的运行时间为 O(n),即与堆排序的时间相同。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      chatgpt:

      首先,我们需要理解 MAX-HEAPIFY 运行的场景以及时间复杂度的定义。

      MAX-HEAPIFY 是用于维护最大堆性质的过程,它的输入是一个数组表示的堆以及需要调整的节点的索引。最大堆性质要求每个节点的值都大于或等于其子节点的值。

      最坏情况运行时间Ω(Ign)的意思是存在一个常数 c,对于任意堆的大小 n,当堆中的元素数量大于 cn 时,MAX-HEAPIFY 的运行时间至少为 Ign。

      现在我们构造一个大小为 n 的堆,使得 MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ign)。

      假设我们有一个有 n 个节点的最大堆,我们希望在从根节点到每个叶节点的路径上都进行递归调用 MAX-HEAPIFY。我们可以为每个节点设定一个恰当的值,以确保这种情况发生。具体地,我们可以按照以下方式设置节点的值:

      • 根节点的值设置为 n。
      • 对于任意非叶节点 i,其左子节点和右子节点的值分别为 2i 和 2i + 1。
      • 对于任意叶节点 i,其值设置为 n - (i - 2^(k-1)),其中 k 是 i 的从根节点到该叶节点的路径上的步数(包括根节点和叶节点)。

      根据这种设置,我们可以发现以下特征:

      1.对于从根节点到每个叶节点的路径,每个节点都有一个唯一的值,并且每个节点的值都比其子节点大。

      2.由于堆的大小为 n,根节点的值为 n,而叶节点的值为 1。因此,路径的长度从 1 到 log2(n)。

      现在,让我们来考虑 MAX-HEAPIFY 在这种堆中的运行情况。从根节点到叶节点的路径上,每个节点的值都比其子节点的值大,因此 MAX-HEAPIFY 函数将会被每个节点递归调用。

      对于从根节点到叶节点的路径长度为 h 的情况,MAX-HEAPIFY 的时间复杂度为 O(h)。在我们构造的堆中,从根节点到每个叶节点的路径长度在 1 到 log2(n) 之间,因此 MAX-HEAPIFY 的最坏情况运行时间为 O(log2(n))。

      由于 log2(n) = Ω(Ign),我们得出结论:对于一个大小为 n 的堆,MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ign)。

      文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

      总结

      设有n个结点的堆高度为h。由堆的定义可知,根节点到叶子结点最多比较 h 次,即 logn 次。

      因此最坏运行时间为Ω(lgn)。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/6626306,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (108)-- 算法导论10.1 6题

      下一篇:【Java 基础】构造方法和 this 关键字详解

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      2025-05-13 09:51:29

      MAX_IDLE_TIME参数解析

      MAX_IDLE_TIME参数解析

      2025-05-13 09:51:29
      IDLE , MAX , 参数 , 解析
      2025-05-13 09:51:17

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      2025-05-13 09:51:17
      ORA , rac , 节点
      2025-05-13 09:51:17

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      2025-05-13 09:51:17
      dg , rac , 日志 , 节点
      2025-05-13 09:50:48

      MAX_IDLE_BLOCKER_TIME参数解析——自动断开阻塞会话

      MAX_IDLE_BLOCKER_TIME参数解析——自动断开阻塞会话

      2025-05-13 09:50:48
      IDLE , MAX , 会话
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5255621

      查看更多

      最新文章

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10

      二叉搜索树中第K小的元素

      2025-05-13 09:50:17

      用go语言,现有一棵无向、无根的树,树中有 n 个节点,按从 0 到 n - 1 编号 给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges

      2025-05-13 09:49:12

      代码 测试用例 测试结果 测试结果 两两交换链表中的节点

      2025-05-09 09:30:19

      DS进阶:并查集

      2025-05-09 08:50:35

      数据结构知识点

      2025-05-08 09:03:07

      查看更多

      热门文章

      Python|二进制链表转整数

      2023-02-27 10:24:46

      jquery-节点操作

      2023-06-13 08:29:18

      【C++】RBTree——红黑树

      2023-07-26 08:09:37

      链表详解(一)—— 无头单向非循环链表

      2023-07-28 07:28:41

      Stream流式编程详解

      2023-07-17 08:10:17

      app自动化测试——XPATH高级用法

      2024-11-15 06:46:25

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      算法题 169. 多数元素,200. 岛屿数量,199. 二叉树的右视图

      C++深度优先搜索(DFS)算法的应用:2791树中可以形成回文的路径数

      C++数据结构——AVL树

      DS进阶:并查集

      文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题

      【数据结构】单链表(长期维护)

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号