爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      深入理解MySQL InnoDB中的B+索引机制

      首页 知识中心 存储 文章详情页

      深入理解MySQL InnoDB中的B+索引机制

      2025-02-11 09:36:37 阅读次数:10

      主键,存储,排序,查询,索引,节点,记录

      在现代数据库系统中,索引是提高数据检索速度的关键机制之一。InnoDB作为MySQL的默认存储引擎,采用了高效的B+树结构来实现其索引功能。这种结构不仅确保了数据的快速检索,还支持高效的插入、更新和删除操作。理解InnoDB中的B+树索引对于数据库优化和性能调优至关重要。

      为了更好地理解 InnoDB 中 B+ 树索引的工作机制,我们从创建一个示例表index_demo开始,并通过详细的示意图展示记录在页中的存储结构及索引的作用。

      CREATE TABLE index_demo (
          c1 INT,
          c2 INT,
          c3 CHAR(1),
          PRIMARY KEY (c1)
      ) ROW_FORMAT = Compact;
      

      这个表中有两个 INT 类型的列 c1 和 c2,一个 CHAR(1) 类型的列 c3,并且 c1 列为主键。表的行格式为 Compact。其基础可见:

      一、InnoDB中的B+ 树索引介绍

      B+ 树索引是一种自平衡的树结构,其节点分为内部节点和叶子节点:

      • 内部节点(Internal Nodes):用于索引导航,存储键值和指向子节点的指针。
      • 叶子节点(Leaf Nodes):存储实际的数据记录或指向数据记录的指针(称为记录指针)。

      在 B+ 树中,所有的数据记录都存储在叶子节点中,而内部节点仅用于存储键值和导航信息。

      深入理解MySQL InnoDB中的B+索引机制

      不论是存放用户记录的数据页,还是存放目录项记录的数据页,我们都把它们存放到B+树这个数据结构中,所以我们也称这些数据页为节点。

      从图中可以看出来,我们的实际用户记录都存放在B+树的最底层的节点上,这些节点也被称为叶子节点或叶节点,其余用来存放目录项的节点称为非叶子节点或者内节点,其中B+树最上面的那个节点也称为根节点。

      依据InnoDB存储引擎B+树的树高推导:当树高为4时,可以存放200百多亿行数据。这样的数据容量,可以满足绝大部分应用的需求,因此我们可以说在绝大部分应用中,B+树高度为3或4就可以满足数据存储的需求。B+树这种高扇出低树高的特征,也大大的提高了主键查询性能。

      二、聚簇索引

      在InnoDB存储引擎中,聚簇索引(Clustered Index)是数据存储和索引的一种特殊而重要的结构。聚簇索引主要特点:

      深入理解MySQL InnoDB中的B+索引机制

      (一)使用记录主键值的大小进行排序

      聚簇索引通过主键值对记录和页进行排序,这涉及三个方面:

       页内记录排序

      在每个页内,记录按照主键值的大小顺序排成一个单向链表,确保了页内记录的有序性,方便快速查找。页内的记录被划分成若干个组,每个组中主键值最大的记录在页内的偏移量会被当作槽依次存放在页目录中(当然Supermum记录比任何用户记录都大),我们可以在页目录内通过二分法定位到主键列等于某个值的记录。

      页之间的排序

      存放用户记录的页按照页内记录的主键大小顺序排成一个双向链表。这种结构使得范围查询和顺序扫描更加高效。

      目录项页的排序

      存放目录项记录的页根据页内目录项记录的主键大小顺序排成一个双向链表。不同层次的页同样遵循这种排序规则,确保树的平衡性和查询效率。 

      (二)叶子节点存储完整的用户记录

      B+树的叶子节点存储的是完整的用户记录,即包括所有列的值(包括隐藏列),在InnoDB中,叶子节点不仅仅是索引,还包含了实际的数据记录。这种特性使得聚簇索引与普通索引有所不同。

      数据即索引 

      聚簇索引中的叶子节点存储了完整的用户记录,因此聚簇索引就是数据的存储方式。换句话说,索引即数据,数据即索引。

      自动创建

      在InnoDB存储引擎中,聚簇索引会自动为每个表创建,并且不需要在MySQL语句中显式使用INDEX语句去创建。通常情况下,聚簇索引是基于表的主键创建的。 

      (三)聚簇索引的优缺点

      聚簇索引的优点 聚簇索引的缺点
      快速数据访问:由于数据和索引存储在一起,基于主键的查询非常高效,不需要额外的索引查找。 插入和删除成本较高:由于需要维护数据的有序性,插入和删除操作可能需要移动大量记录,导致性能开销。
      有序数据存储:记录按照主键顺序存储,适合范围查询和顺序扫描,提高查询性能。 更新成本较高:如果更新操作导致主键变化,会引发记录的重新定位和页的重新排序,影响性能。

      聚簇索引是InnoDB存储引擎中一种关键的索引类型,通过主键排序和存储完整用户记录,提供了高效的数据访问和有序的数据存储。在优化数据库性能时,理解和合理使用聚簇索引可以显著提升查询和数据操作的效率。具体优化可见:MySQL索引性能优化分析。

      三、二级索引

      聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的。那如果我们想以别的列作为搜索条件该咋办呢?难道只能从头到尾沿着链表依次遍历记录么?不,我们可以多建几棵B+树,不同的B+树中的数据采用不同的排序规则。比方说我们用c2列的大小作为数据页、页中记录的排序规则,再建一棵B+树,效果如下图所示:

      深入理解MySQL InnoDB中的B+索引机制

      在InnoDB存储引擎中,除了聚簇索引(Clustered Index),我们还可以使用二级索引(Secondary Index)来提高非主键列上的查询性能。二级索引是一种基于非主键列的B+树结构,用于快速定位数据记录。

      (一)二级索引的特点

      基于非主键列排序

      二级索引的B+树结构基于指定的非主键列进行排序,这包括以下几个方面:

      • 页内记录排序:在每个页内,记录按照指定列(例如c2列)的大小顺序排成一个单向链表。
      • 页之间的排序:存放用户记录的页按照页内记录的指定列顺序排成一个双向链表。这种结构便于快速范围查询和顺序扫描。
      • 目录项页的排序:存放目录项记录的页根据页内目录项记录的指定列顺序排成一个双向链表,不同层次的页同样遵循这种排序规则。

      叶子节点存储部分数据

      与聚簇索引不同,二级索引的叶子节点存储的是索引列和主键列的值,而不是完整的用户记录。这种设计减少了存储空间的占用,但在查询过程中需要进行回表操作以获取完整的用户记录。

      (二)二级索引的工作流程

      假设我们创建了一个基于c2列的二级索引,并通过c2列的值查找某些记录,以查找c2列的值为4的记录为例,查找过程如下::

      1. 确定目录项记录页

        从根页面开始,根据c2列的值4定位到目录项记录所在的页,通过页44快速定位到目录项记录所在的页为页42(因为2 < 4 < 9)。

      2. 通过目录项记录页确定用户记录真实所在的页

        在页42中,根据c2列的值确定实际存储用户记录的页。由于c2列没有唯一性约束,值为4的记录可能分布在多个数据页中。最终确定实际存储用户记录的页在页34和页35中(因为2 < 4 ≤ 4)。

      3. 在真实存储用户记录的页中定位到具体的记录

        在页34和页35中定位到具体的记录,但二级索引的叶子节点中仅存储c2列和主键列c1的值。

      4. 回表操作

        根据主键值到聚簇索引中查找完整的用户记录。这个过程称为回表操作,即从二级索引定位到主键,再通过主键在聚簇索引中查找完整记录。

      (三)二级索引的优缺点

      二级索引的优点 二级索引的缺点
      提高查询效率:基于非主键列的查询可以利用二级索引快速定位数据,减少全表扫描的开销。 回表操作:查询完整记录时需要回表操作,增加了一次I/O开销。
      灵活性:可以为多个列创建二级索引,提升多种查询条件下的性能。 占用空间:虽然叶子节点不存储完整记录,但仍会占用额外的存储空间。

      二级索引通过基于非主键列排序和存储索引列与主键列的值,为非主键列的查询提供了高效的解决方案。然而,由于叶子节点仅存储部分数据,查询完整记录时需要回表操作。因此,合理使用和配置二级索引,对于提升数据库查询性能至关重要。 具体优化可见:MySQL索引性能优化分析。

      四、联合索引

      在InnoDB存储引擎中,联合索引(Composite Index)是一种基于多个列的索引,用于提高复杂查询的效率。联合索引通过对多个列进行排序,能够更有效地处理包含多个条件的查询。

      同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按照c2和c3列的大小进行排序,这个包含两层含义:

      • 先把各个记录和页按照c2列进行排序。
      • 在记录的c2列相同的情况下,采用c3列进行排序

      为c2和c3列建立的索引的示意图如下:

      深入理解MySQL InnoDB中的B+索引机制

      如图所示,我们需要注意一下几点:

      • 每条目录项记录都由c2、c3、页号这三个部分组成,各条记录先按照c2列的值进行排序,如果记录的c2列相同,则按照c3列的值进行排序。

      • B+树叶子节点处的用户记录由c2、c3和主键c1列组成。

      (一)联合索引的特点

      多列排序规则

      联合索引按照多个列的值进行排序,其排序规则包括以下两个层次:

      • 第一列排序:首先按照第一个指定列(例如c2列)的值进行排序。
      • 第二列排序:在第一列相同的情况下,按照第二个指定列(例如c3列)的值进行排序。

      在这个结构中,每个目录项记录由c2、c3和页号组成,叶子节点存储c2、c3和主键c1。

      联合索引的组成

      • 目录项记录:每条目录项记录由c2、c3和页号组成,先按照c2列排序,如果c2列相同,则按照c3列排序。
      • 叶子节点记录:叶子节点处的用户记录包含c2、c3和主键c1列。这种结构使得查询包含c2和c3列的条件时更加高效。

      (二)联合索引与单列索引的区别

      联合索引

      • 建立联合索引会生成一棵B+树,该树按照c2和c3列进行排序。
      • 查询时,如果使用c2和c3作为条件,能够快速定位记录,减少查询时间。

      单列索引

      • 为c2和c3分别建立索引会生成两棵独立的B+树,每棵树分别按照c2或c3进行排序。
      • 查询时,如果只使用c2或c3作为条件,可以利用相应的索引。但如果同时使用c2和c3作为条件,可能需要进行多次索引查找和合并操作,增加查询开销。

      (三)联合索引的优缺点

      联合索引的优点 联合索引的缺点
      高效的多列查询:联合索引能够显著提高包含多个列条件的查询性能。 插入和维护成本较高:由于需要对多个列进行排序和维护,插入和更新操作可能较慢。
      减少单列索引的数量:通过一个联合索引代替多个单列索引,可以节省存储空间。 部分匹配限制:联合索引在查询中只能高效利用前缀列,如果查询条件不包括索引的最左列,索引的利用率会降低。

      (四)联合索引的使用建议

      前缀匹配原则

      联合索引在查询中按照列的顺序生效,因此查询条件应尽量包括索引的最左列(即前缀列)。例如,创建了(c2, c3)的联合索引后,查询条件包含c2或(c2, c3)时能够有效利用索引。

      适用场景

      联合索引适用于需要同时基于多个列进行查询的场景。例如,在电商系统中,可以为商品类别和价格区间创建联合索引,以优化相关查询。

      联合索引是InnoDB中一种重要的索引类型,通过对多个列进行排序和索引,提高了多列查询的性能。与单列索引相比,联合索引在处理复杂查询时更加高效。然而,合理的索引设计和使用对于优化数据库性能至关重要。理解联合索引的工作原理和最佳实践,可以帮助我们更好地利用MySQL数据库。  具体优化可见:MySQL索引性能优化分析。

      五、总结

      InnoDB中的索引是提高数据检索效率的关键。本文介绍了三种主要索引类型:

      1. 聚簇索引:基于主键排序存储完整的用户记录,适合快速主键查询和范围查询。
      2. 二级索引:基于非主键列排序,提升非主键查询性能,但需要回表操作。
      3. 联合索引:基于多个列排序,适用于复杂查询,能够显著提升多列条件查询的效率。

      通过合理使用和配置这些索引,能有效提升数据库查询和数据操作的性能。理解索引的工作机制和最佳实践,对于优化MySQL数据库性能至关重要。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://zyfcodes.blog.csdn.net/article/details/142446131,作者:张彦峰ZYF,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:动态内存分配与管理详解(附加笔试题分析)

      下一篇:【大小端】大小端(数据在内存中的存储)

      相关文章

      2025-05-19 09:04:53

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      2025-05-19 09:04:53
      存储 , 数据 , 数据恢复 , 解压
      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:38

      mysql只有在任务处于完成状态才能运行

      mysql只有在任务处于完成状态才能运行

      2025-05-19 09:04:38
      MySQL , 任务 , 数据库 , 查询 , 状态
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-16 09:15:17

      MySQL 复合查询(重点)

      MySQL 复合查询(重点)

      2025-05-16 09:15:17
      员工 , 多表 , 工资 , 查询
      2025-05-14 10:33:16

      30天拿下Rust之切片

      在Rust中,切片是一种非常重要的引用类型。它允许你安全地引用一段连续内存中的数据,而不需要拥有这些数据的所有权。切片不包含分配的内存空间,它仅仅是一个指向数据开始位置和长度的数据结构。

      2025-05-14 10:33:16
      amp , end , 切片 , 字符串 , 引用 , 索引 , 迭代
      2025-05-14 10:33:16

      30天拿下Rust之向量

      在Rust语言中,向量(Vector)是一种动态数组类型,可以存储相同类型的元素,并且可以在运行时改变大小。向量是Rust标准库中的一部分,位于std::vec模块中。

      2025-05-14 10:33:16
      Rust , 使用 , 元素 , 向量 , 方法 , 索引 , 迭代
      2025-05-14 10:03:13

      MySQL 索引优化以及慢查询优化

      MySQL 是一种广泛使用的关系型数据库管理系统,因其性能优异和使用便捷而备受欢迎。然而,随着数据量的增长和查询复杂度的增加,性能瓶颈也变得越来越明显。

      2025-05-14 10:03:13
      MySQL , 优化 , 使用 , 性能 , 数据库 , 查询 , 索引
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5236610

      查看更多

      最新文章

      【NetApp数据恢复】误操作导致NetApp存储的卷丢失,卷内虚拟机无法访问的数据恢复案例

      2025-05-19 09:04:53

      mysql 存储函数及调用

      2025-05-13 09:53:13

      分隔链表-146. LRU 缓存

      2025-05-13 09:50:28

      MySQL——索引(概述和结构介绍)

      2025-05-09 08:20:32

      m3db调优踩坑问题总结

      2025-05-08 09:03:57

      两数相加

      2025-05-08 09:03:38

      查看更多

      热门文章

      Ceph 块设备存储

      2023-05-09 05:52:48

      MySQL技术内幕 InnoDB存储引擎:B+树索引的使用

      2023-05-09 05:53:51

      存储相关

      2023-05-04 08:57:32

      vmware

      2023-06-14 09:05:26

      Sql Server 分页存储过程

      2023-05-30 08:05:57

      Raid5两块硬盘掉线数据恢复方法和数据恢复过程

      2024-07-01 01:31:09

      查看更多

      热门标签

      存储 缓存 内存 数据库 数据 redis mysql 服务器 数据恢复 Redis linux java 链表 MySQL sql
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      大数据治理的介绍与认识

      Oracle Lob类型存储浅析

      SQL SERVER 存储过程的天然递归

      MySQL技术内幕 InnoDB存储引擎:B+树索引的使用

      每日学习一个数据结构-Ziplist压缩表

      数据库----数据类型正确选择

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号