爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      Python 之父的解析器系列之五:左递归 PEG 语法

      首页 知识中心 软件开发 文章详情页

      Python 之父的解析器系列之五:左递归 PEG 语法

      2025-02-26 07:20:01 阅读次数:13

      oracle,调用,返回,递归

      假设有如下的语法规则:

      expr: expr '+' term | term
      

      如果我们天真地将它翻译成递归下降解析器的片段,会得到如下内容:

      def expr():
          if expr() and expect('+') and term():
              return True
          if term():
              return True
          return False
      

      也就是expr() 以调用expr() 开始,后者也以调用expr() 开始,以此类推……这只能以堆栈溢出而结束,抛出异常RecursionError 。

      传统的补救措施是重写语法。在之前的文章中,我已经这样做了。事实上,上面的语法也能识别出来,如果我们重写成这样:

      expr: term '+' expr | term
      

      但是,如果我们用它生成一个解析树,那么解析树的形状会有所不同,这会导致破坏性的后果,比如当我们在语法中添加一个'-' 运算符时(因为a - (b - c) 与(a - b) - c 不一样)。

      这通常可以使用更强大的 PEG 特性来解决,例如分组和迭代,我们可以将上述规则重写为:

      expr: term ('+' term)*
      

      实际上,这正是 Python 当前语法在 pgen 解析器生成器上的写法(pgen 与左递归规则具有同样的问题)。

      但是这仍然存在一些问题:因为像'+' 和'-' 这样的运算符,基本上是二进制的(在 Python 中),当我们解析像a + b + c 这样的东西时,我们必须遍历解析的结果(基本上是列表['a','+','b','+','c'] ),以构造一个左递归的解析树(类似于 [['a','+','b'] ,'+','c'] )。

      原始的左递归语法已经表诉了所需的关联性,因此,如果我们可以直接以该形式生成解析器,那将会很好。我们可以!一位粉丝向我指出了一个很好的技巧,还附带了一个数学证明,很容易实现。我会试着在这里解释一下。

      让我们考虑输入foo + bar + baz 作为示例。我们想要解析出的解析树对应于(foo + bar)+ baz 。这需要对expr() 进行三次左递归调用:一次对应于顶级的“+” 运算符(即第二个); 一次对应于内部的“+”运算符(即第一个); 还有一次是选择第二个备选项(即term )。

      由于我不善于使用计算机绘制实际的图表,因此我将在此使用 ASCII 技巧作演示:

      expr------------+------+
        |              \      \
      expr--+------+   '+'   term
        |    \      \          |
      expr   '+'   term        |
        |            |         |
      term           |         |
        |            |         |
      'foo'        'bar'     'baz'
      

      我们的想法是希望在 expr() 函数中有一个“oracle”(译注:预言、神谕,后面就不译了),它要么告诉我们采用第一个备选项(即递归调用 expr()),要么是第二个(即调用 term())。在第一次调用 expr() 时,“oracle”应该返回 true; 在第二次(递归)调用时,它也应该返回 true,但在第三次调用时,它应该返回 false,以便我们可以调用 term()。

      在代码中,应该是这样:

      def expr():
          if oracle() and expr() and expect('+') and term():
              return True
          if term():
              return True
          return False
      

      我们该怎么写这样的“oracle”呢?试试看吧......我们可以尝试记录在调用堆栈上的 expr() 的(左递归)调用次数,并将其与下面表达式中“+” 运算符的数量进行比较。如果调用堆栈的深度大于运算符的数量,则应该返回 false。

      我几乎想用sys._getframe() 来实现它,但有更好的方法:让我们反转调用的堆栈!

      这里的想法是我们从 oracle 返回 false 处调用,并保存结果。这就有了expr()->term()->'foo' 。(它应该返回初始的term 的解析树,即'foo' 。上面的代码仅返回 True,但在本系列第二篇文章中,我已经演示了如何返回一个解析树。)很容易编写一个 oracle 来实现,它应该在首次调用时就返回 false——不需要检查堆栈或向前回看。

      然后我们再次调用expr() ,这时 oracle 会返回 true,但是我们不对 expr() 进行左递归调用,而是用前一次调用时保存的结果来替换。瞧呐,预期的'+' 运算符及随后的term 也出现了,所以我们将会得到foo + bar 。

      我们重复这个过程,然后事情看起来又很清晰了:这次我们会得到完整表达式的解析树,并且它是正确的左递归((foo + bar)+ baz )。

      然后我们再次重复该过程,这一次,oracle 返回 true,并且前一次调用时保存的结果可用,没有下一步的'+' 运算符,并且第一个备选项失效。所以我们尝试第二个备选项,它会成功,正好找到了初始的 term('foo')。与之前的调用相比,这是一个糟糕的结果,所以在这里我们停止并留下最长的解析(即(foo + bar)+ baz )。

      为了将其转换为实际的工作代码,我首先要稍微重写代码,以将 oracle() 的调用与左递归的 expr() 调用相结合。我们称之为oracle_expr() 。代码:

      def expr():
          if oracle_expr() and expect('+') and term():
              return True
          if term():
              return True
          return False
      

      接着,我们将编写一个实现上述逻辑的装饰器。它使用了一个全局变量(不用担心,我稍后会改掉它)。oracle_expr() 函数将读取该全局变量,而装饰器操纵着它:

      saved_result = None
      def oracle_expr():
          if saved_result is None:
              return False
          return saved_result
      def expr_wrapper():
          global saved_result
          saved_result = None
          parsed_length = 0
          while True:
              new_result = expr()
              if not new_result:
                  break
              new_parsed_length = <calculate size of new_result>
              if new_parsed_length <= parsed_length:
                  break
              saved_result = new_result
              parsed_length = new_parsed_length
          return saved_result
      

      这过程当然是可悲的,但它展示了代码的要点,所以让我们尝试一下,将它发展成我们可以引以为傲的东西。

      决定性的洞察(这是我自己的,虽然我可能不是第一个想到的)是我们可以使用记忆缓存而不是全局变量,将一次调用的结果保存到下一次,然后我们不需要额外的oracle_expr() 函数——我们可以生成对 expr() 的标准调用,无论它是否处于左递归的位置。

      为了做到这点,我们需要一个单独的 @memoize_left_rec 装饰器,它只用于左递归规则。它通过将保存的值从记忆缓存中取出,充当了 oracle_expr() 函数的角色,并且它包含着一个循环调用,只要每个新结果所覆盖的部分比前一个长,就反复地调用 expr()。

      当然,因为记忆缓存分别按输入位置和每个解析方法来处理缓存,所以它不受回溯或多个递归规则的影响(例如,在玩具语法中,我一直使用 expr 和 term 都是左递归的)。

      我在第 3 篇文章中创建的基础结构的另一个不错的属性是它更容易检查新结果是否长于旧结果:mark() 方法将索引返回到输入的标记符数组中,因此我们可以使用它,而非上面的parsed_length 。

      我没有证明为什么这个算法总是有效的,不管这个语法有多疯狂。那是因为我实际上没有读过那个证明。我看到它适用于玩具语法中的 expr 等简单情况,也适用于更复杂的情况(例如,涉及一个备选项里可选条目背后藏着的左递归,或涉及多个规则之间的相互递归),但在 Python 的语法中,我能想到的最复杂的情况仍然相当温和,所以我可以信任于定理和证明它的人。

      所以让我们坚持干,并展示一些真实的代码。

      首先,解析器生成器必须检测哪些规则是左递归的。这是图论中一个已解决的问题。我不会在这里展示算法,事实上我将进一步简化工作,并假设语法中唯一的左递归规则就是直接左递归的,就像我们的玩具语法中的 expr 一样。然后检查左递归只需要查找以当前规则名称开头的备选项。我们可以这样写:

      def is_left_recursive(rule):
          for alt in rule.alts:
              if alt[0] == :
                  return True
          return False
      

      现在我们修改解析器生成器,以便对于左递归规则,它能生成一个不同的装饰器。回想一下,在第 3 篇文章中,我们使用 @memoize 修饰了所有的解析方法。我们现在对生成器进行一个小小的修改,对于左递归规则,我们替换成 @memoize_left_rec ,然后我们在memoize_left_rec 装饰器中变魔术。生成器的其余部分和支持代码无需更改!(然而我不得不在可视化代码中捣鼓一下。)

      作为参考,这里是原始的 @memoize 装饰器,从第 3 篇中复制而来。请注意,self 是一个Parser 实例,它具有 memo 属性(用空字典初始化)、mark() 和 reset() 方法,用于获取和设置 tokenizer 的当前位置:

      def memoize(func):
          def memoize_wrapper(self, *args):
              pos = self.mark()
              memo = self.memos.get(pos)
              if memo is None:
                  memo = self.memos[pos] = {}
              
              key = (func, args)
              if key in memo:
                  res, endpos = memo[key]
                  self.reset(endpos)
              else:
                  res = func(self, *args)
                  endpos = self.mark()
                  memo[key] = res, endpos
              return res
          return memoize_wrapper
      

      @memoize 装饰器在每个输入位置记住了前一调用——在输入标记符的(惰性)数组的每个位置,有一个单独的memo 字典。memoize_wrapper 函数的前四行与获取正确的memo 字典有关。

      这是 @memoize_left_rec 。只有 else 分支与上面的 @memoize 不同:

          def memoize_left_rec(func):
          def memoize_left_rec_wrapper(self, *args):
              pos = self.mark()
              memo = self.memos.get(pos)
              if memo is None:
                  memo = self.memos[pos] = {}
              key = (func, args)
              if key in memo:
                  res, endpos = memo[key]
                  self.reset(endpos)
              else:
                  # Prime the cache with a failure.
                  memo[key] = lastres, lastpos = None, pos
                  # Loop until no longer parse is obtained.
                  while True:
                      self.reset(pos)
                      res = func(self, *args)
                      endpos = self.mark()
                      if endpos <= lastpos:
                          break
                      memo[key] = lastres, lastpos = res, endpos
                  res = lastres
                  self.reset(lastpos)
              return res
          return memoize_left_rec_wrapper
      

      它很可能有助于显示生成的 expr() 方法,因此我们可以跟踪装饰器和装饰方法之间的流程:

          @memoize_left_rec 
          def expr(self):
              pos = self.mark()
              if ((expr := self.expr()) and
                  self.expect('+') and
                  (term := self.term())):
                  return Node('expr', [expr, term])
              self.reset(pos)
              if term := self.term():
                  return Node('term', [term])
              self.reset(pos)
              return None
      

      让我们试着解析 foo + bar + baz 。

      每当你调用被装饰的 expr() 函数时,装饰器就会“拦截”调用,它会在当前位置查找前一个调用。在第一个调用处,它会进入 else 分支,在那里它重复地调用未装饰的函数。当未装饰的函数调用 expr() 时,这当然指向了被装饰的版本,因此这个递归调用会再次被截获。递归在这里停止,因为现在 memo 缓存有了命中。

      接下来呢?初始的缓存值来自这行:

                  # Prime the cache with a failure.
                  memo[key] = lastres, lastpos = None, pos
      

      这使得被装饰的 expr() 返回 None,在那 expr() 里的第一个 if 会失败(在expr := self.expr() )。所以我们继续到第二个 if,它成功识别了一个 term(在我们的例子中是 ‘foo’),expr 返回一个 Node 实例。它返回到了哪里?到了装饰器里的 while 循环。这新的结果会更新 memo 缓存(那个 node 实例),然后开始下一个迭代。

      再次调用未装饰的 expr(),这次截获的递归调用返回新缓存的 Node 实例(一个 term)。这是成功的,调用继续到 expect('+')。这再次成功,然后我们现在处于第一个“+” 操作符。在此之后,我们要查找一个 term,也成功了(找到 'bar')。

      所以对于空的 expr(),目前已识别出 foo + bar ,回到 while 循环,还会经历相同的过程:用新的(更长的)结果来更新 memo 缓存,并开启下一轮迭代。

      游戏再次上演。被截获的递归 expr() 调用再次从缓存中检索新的结果(这次是 foo + bar),我们期望并找到另一个 ‘+’(第二个)和另一个 term(‘baz’)。我们构造一个 Node 表示 (foo + bar) + baz ,并返回给 while 循环,后者将它填充进 memo 缓存,并再次迭代。

      但下一次事情会有所不同。有了新的结果,我们查找另一个 '+' ,但没有找到!所以这个expr() 调用会回到它的第二个备选项,并返回一个可怜的 term。当走到 while 循环时,它失望地发现这个结果比最后一个短,就中断了,将更长的结果((foo + bar)+ baz )返回给原始调用,就是初始化了外部 expr() 调用的地方(例如,一个 statement() 调用——此处未展示)。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://www.cnblogs.com/pythonista/p/11479373.html,作者:豌豆花下猫,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:JavaWeb前端常用的代码复用总结

      下一篇:Python 进阶之源码分析:如何将一个类方法变为多个方法?

      相关文章

      2025-05-19 09:05:01

      【手把手带你刷好题】—— 61.按顺序打印i~j(递归)

      【手把手带你刷好题】—— 61.按顺序打印i~j(递归)

      2025-05-19 09:05:01
      打卡 , 递归
      2025-05-19 09:04:30

      ORA-01110: data file 1: '/u01/app/oracle/oradata/orcl151/system01.dbf'

      ORA-01110: data file 1: '/u01/app/oracle/oradata/orcl151/system01.dbf'

      2025-05-19 09:04:30
      data , oracle
      2025-05-16 09:15:24

      模拟实现strcmp

      模拟实现strcmp

      2025-05-16 09:15:24
      gcc , 编译器 , 返回
      2025-05-16 09:15:17

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      2025-05-16 09:15:17
      回溯 , 子集 , 数组 , 算法 , 递归
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:33:31

      计算机小白的成长历程——习题演练(函数篇)

      计算机小白的成长历程——习题演练(函数篇)

      2025-05-14 10:33:31
      函数 , 字符串 , 数组 , 知识点 , 编写 , 迭代 , 递归
      2025-05-14 10:33:25

      30天拿下Rust之高级类型

      Rust作为一门系统编程语言,以其独特的内存管理方式和强大的类型系统著称。其中,高级类型的应用,为Rust的开发者提供了丰富的编程工具和手段,使得开发者可以更加灵活和高效地进行编程。

      2025-05-14 10:33:25
      Rust , type , 代码 , 函数 , 类型 , 返回
      2025-05-14 10:07:38

      30天拿下Python之迭代器和生成器

      在Python中,迭代器是一个非常重要的概念,它使得我们能够遍历一个序列而无需使用索引。迭代器不仅限于列表、元组、字符串等,我们也可以创建自定义的迭代器对象。

      2025-05-14 10:07:38
      Python , 使用 , 函数 , 生成器 , 返回 , 迭代 , 遍历
      2025-05-14 10:03:13

      一步一步在linux上部署Oracle 11g R2 RAC 【1】

      一步一步在linux上部署Oracle 11g R2 RAC 【1】

      2025-05-14 10:03:13
      app , oracle , 主机名 , 磁盘
      2025-05-14 10:03:13

      AJAX-事件循环(超详细过程)

      JS有一个基于事件循环的并发模型,事件循环负责执行代码、收集和处理事件以及执行队列中的子任务。

      2025-05-14 10:03:13
      代码 , 任务 , 出栈 , 异步 , 执行 , 调用 , 队列
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5222431

      查看更多

      最新文章

      模拟实现strcmp

      2025-05-16 09:15:24

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10

      30天拿下Rust之高级类型

      2025-05-14 10:33:25

      30天拿下Python之迭代器和生成器

      2025-05-14 10:07:38

      AJAX-事件循环(超详细过程)

      2025-05-14 10:03:13

      C++ 11新特性之bind

      2025-05-14 10:03:05

      查看更多

      热门文章

      Python|斐波那契数列

      2023-02-27 10:01:21

      PHP:将list列表转为tree树形数据

      2023-02-28 08:23:26

      Python 函数调用父类详解

      2023-04-23 09:44:31

      Python|动态规划与回溯求数字个数

      2023-02-27 10:01:21

      Python|“套娃”算法-递归算法解决全排列

      2023-03-02 02:41:22

      Java学习之方法调用过程图解(理解)

      2023-04-06 06:35:24

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      02 机器学习 - Python基础回顾(二)

      js常用的处理数组的方法

      python面试题——Python中怎么通过反射来调用对象的函数?

      Java中的反射机制详解

      初始Python篇(12)—— object类、对象的特殊属性与方法、深拷贝与浅拷贝

      Java Stream函数式编程案例图文详解

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号