爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      首页 知识中心 存储 文章详情页

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      2024-04-19 06:40:32 阅读次数:49

      LRU,缓存,链表

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      LRU(Least Recently Used)缓存是一种常用的缓存淘汰策略,用于在有限的缓存空间中存储数据。其基本思想是:如果数据最近被访问过,那么在未来它被访问的概率也更高。因此,LRU缓存会保留最近访问过的数据,并在缓存满时淘汰最久未使用的数据

      定义

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      LRU(Least Recently Used)缓存是一种常用的缓存淘汰策略,用于在有限的缓存空间中存储数据,其基本思想是,如果数据最近被访问过,那么在未来它被访问的概率也更高,因此,LRU缓存会保留最近访问过的数据,并在缓存满时淘汰最久未使用的数据,代码实现思路如下:

      1. 插入新的数据项。
      2. 访问(或检索)现有的数据项,并将其标记为最近使用。
      3. 当缓存达到其容量限制时,删除最久未使用的数据项。

      代码案例

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      为了演示LRU,使用LinkedHashMap类来实现一个LUR缓存,因为它内部已经处理了哈希表和双向链表,哈希表提供了快速的插入和查找操作(平均时间复杂度为O(1)),而双向链表则维护了元素的插入顺序或访问顺序(取决于构造函数的参数),代码如下:

      import java.util.LinkedHashMap;  
      import java.util.Map;  
        
      public class LRUCache<K, V> extends LinkedHashMap<K, V> {  
          private int cacheSize;  
        
          public LRUCache(int cacheSize) {  
              // 第三个参数设置为true表示应该按照访问顺序排序,最近访问的放在头部,最老访问的放在尾部  
              super(16, 0.75f, true); // 可以使用一个默认的初始容量,例如16  	
              this.cacheSize = cacheSize;  
          }  
        
          @Override  
          protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {  
              // 当map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据(即尾部的数据)  
              return size() > cacheSize;  
          }  
      }
      

      在上面的代码中,LRUCache类继承了LinkedHashMap并重写了removeEldestEntry方法,这个方法的默认实现总是返回false,意味着不会自动移除最老的条目,但是在实现中,当缓存的大小超过了指定的cacheSize时,该方法返回true,触发移除最久未使用的条目(也就是链表中的尾部元素)。

      此外,通过将LinkedHashMap的构造函数中的accessOrder参数设置为true,让链表按照访问顺序来排序元素,这样,最近访问的元素会被放在链表的头部,而最久未访问的元素则会被放在尾部,当需要移除元素时,可以快速地移除链表尾部的元素。

      这个设计思想利用了哈希表的高效查找和链表的顺序性来实现一个简单而有效的LRU缓存,通过重写一个方法,能够定制缓存的行为以符合LRU策略。

      public static void main(String[] args) {  
          LRUCache<Integer, String> lruCache = new LRUCache<>(3);  
          lruCache.put(1, "one");    // 缓存是 {1="one"}  
          lruCache.put(2, "two");    // 缓存是 {1="one", 2="two"}  
          lruCache.put(3, "three");  // 缓存是 {1="one", 2="two", 3="three"}  
          lruCache.get(1);           // 最近访问的是1,缓存是 {2="two", 3="three", 1="one"}  
          lruCache.put(4, "four");   // 因为缓存容量只有3,所以移除最老的条目2,缓存变为 {3="three", 1="one", 4="four"}  
      }
      

      核心总结

      【揭秘】如何使用LinkedHashMap来实现一个LUR缓存?

      使用LinkedHashMap实现LRU非常简单且高效,当业务比较简单、或者用来演示LRU的实现是没有啥问题的,它本身有一些限制,因此不适合用在线上,如下:

      1、它不是线程安全的,如果多个线程同时访问这个LRU缓存,可能会导致数据不一致的问题,根本在于LinkedHashMap本身并不是线程安全的,所以在多线程环境下,需要额外的同步措施,比如使用Collections.synchronizedMap方法来包装这个缓存,或者在访问时加上同步块。

      2、它没办法自动处理数据加载以及数据过期,在实际应用中,有时希望当缓存中不存在请求的数据时能够自动从数据库或其他数据源加载数据,或者当数据在一定时间内没有被访问时能够自动过期。

      3、它没办法精准控制内存使用,虽然可以限制缓存中的条目数量,但是这个限制并不直接对应于内存使用量,不同的缓存条目可能占用不同大小的内存,所以这个简单的LRU缓存可能会导致内存溢出,尤其是在存储大对象时。

      4、它很难扩展,由于这个实现是基于LinkedHashMap的,它的扩展性受到了一定的限制,如果需要更复杂的缓存行为或更高级的功能(比如缓存分区、备份、持久化等),它是做不到的。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/bytegood/9058687,作者:程序员古德,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:获得拼凑SQL语句运行后的结果

      下一篇:JVM系列一:JVM内存组成及分配

      相关文章

      2025-05-19 09:04:14

      【牛客网+LeetCode】链表 OJ强训题——高效解法

      【牛客网+LeetCode】链表 OJ强训题——高效解法

      2025-05-19 09:04:14
      数据结构 , 链表
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:03:13

      数据结构-队列

      队列是仅限在一端进行插入,另一端进行删除的线性表。

      2025-05-14 10:03:13
      元素 , 入队 , 出队 , 链表 , 队列
      2025-05-14 10:03:13

      【Mybatis】-防止SQL注入

      【Mybatis】-防止SQL注入

      2025-05-14 10:03:13
      SQL , 执行 , 日志 , 注入 , 缓存 , 编译 , 语句
      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      在高并发系统中,Redis 缓存是一种常见的性能优化方式。然而,缓存击穿问题也伴随着高并发访问而来。

      2025-05-14 10:02:48
      Redis , 互斥 , 数据库 , 线程 , 缓存 , 请求
      2025-05-13 09:50:28

      分隔链表-146. LRU 缓存

      给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。

      2025-05-13 09:50:28
      int , key , LinkedHashMap , 缓存 , 节点 , 链表
      2025-05-13 09:50:17

      二叉树展开为链表

      二叉树展开为链表

      2025-05-13 09:50:17
      二叉树 , 单链 , 指针 , 结点 , 链表
      2025-05-12 10:19:12

      DS高阶:LRU Cache

      LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。

      2025-05-12 10:19:12
      Cache , LRU , 使用 , 哈希 , 节点 , 迭代 , 链表
      2025-05-12 09:10:14

      排序链表,23. 合并 K 个升序链表,146. LRU 缓存

      给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。

      2025-05-12 09:10:14
      key , lt , 升序 , 链表
      2025-05-12 09:10:14

      环形链表 II,21. 合并两个有序链表,2. 两数相加

      给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

      2025-05-12 09:10:14
      lt , pos , 节点 , 链表
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5245244

      查看更多

      最新文章

      【Mybatis】-防止SQL注入

      2025-05-14 10:03:13

      分隔链表-146. LRU 缓存

      2025-05-13 09:50:28

      排序链表,23. 合并 K 个升序链表,146. LRU 缓存

      2025-05-12 09:10:14

      LRU 缓存

      2025-05-12 08:43:47

      DS初阶:时间复杂度和空间复杂度

      2025-05-08 09:04:25

      两数相加

      2025-05-08 09:03:38

      查看更多

      热门文章

      leetcode数据结构-LRU

      2023-03-02 10:21:35

      精华推荐 | 【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」透彻剖析贯穿RocketMQ的存储系统的实现原理和持久化机制

      2023-02-24 10:12:47

      elasticsearch预加载数据到文件系统缓存

      2024-09-25 10:13:57

      jedis工具类

      2023-02-16 08:14:03

      ajax get缓存问题+ajax post请求

      2023-06-07 07:32:36

      nginx反向代理(2)

      2024-07-01 01:32:03

      查看更多

      热门标签

      存储 缓存 内存 数据库 数据 redis mysql 服务器 数据恢复 Redis linux java 链表 MySQL sql
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      Redis的常见面试题(全)

      Linux内核设计与实现(16)--页高速缓存和页回写

      redis---消息队列stream

      Linux:redis集群(3.*版本 和 5.*版本)搭建方法

      数据库读写分离这个坑,让刚入职的我一脸懵!

      nginx架构

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号