爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      2025-01-07 09:19:59 阅读次数:15

      关键字,最小,节点

      三、请给出表示 {1,2,3,4,5} 的最小度数为 2 的所有合法 B 树。

      文心一言:

      B树是一种自平衡的树,它保持数据有序,并允许我们对树进行插入、删除和查找操作,同时保持对数的时间复杂度。B树的每个节点可以有多于两个的子节点,这取决于B树的阶数t。阶数t定义了树的一些性质,比如一个非根节点最多有t-1个关键字和t个子节点,根节点则最多有2t-1个关键字。

      在这个问题中,我们要求的是表示集合{1,2,3,4,5}的最小度数为2的所有合法B树。最小度数为2意味着每个非根节点至少有2个子节点(即至少有一个关键字),根节点则至少有一个子节点。

      首先,我们需要明确B树的定义和性质。对于最小度数为2的B树,非根节点至少有一个关键字和两个子节点,根节点至少有一个关键字和一个子节点。由于我们有5个关键字,所以根节点将包含至少一个关键字,并且可能有其他关键字,这取决于树的具体结构。

      现在,我们可以开始构建所有可能的B树。由于集合中只有5个元素,我们可以尝试不同的组合来构建树。

      以下是表示集合{1,2,3,4,5}的最小度数为2的所有合法B树:

      单节点树: 根节点包含所有5个关键字,没有子节点。这不是一个标准的B树结构,因为B树的定义要求非根节点至少有两个子节点,但这里我们将其作为一种特殊情况列出。 两层树: 根节点包含3个关键字,将集合分为3个部分:{1, 2},{3},{4, 5}。根节点有4个子节点,其中两个子节点是叶子节点,分别包含集合的一个部分;另外两个子节点是内部节点,但在这个特定情况下它们是空的(因为它们下面的叶子节点已经包含了所有的关键字)。 另一种可能的两层树结构是根节点包含2个关键字,将集合分为2个部分:{1, 2, 3}和{4, 5}。根节点有3个子节点,其中一个子节点是叶子节点,包含集合的一个部分;另外两个子节点是内部节点,但在这个特定情况下它们是空的。 三层树: 在这种情况下,根节点将包含1或2个关键字,将集合分为2或3个部分。然后,每个部分进一步被分为更小的子集,直到每个叶子节点只包含一个关键字。这样的结构将确保每个非根节点至少有两个子节点。 请注意,由于B树的定义允许节点在达到最大容量之前不进行分裂,因此可能存在多种不同的树结构,它们都满足最小度数为2的要求。上述描述提供了一些可能的树结构,但可能不是全部。要列出所有可能的树结构,我们需要详细地考虑所有可能的分裂和组合方式。

      由于手动列出所有可能的树结构可能相当繁琐,通常我们会使用算法或计算机程序来生成这些树。在实际应用中,B树的构建和操作通常是通过算法自动完成的,而不是手动构建的。

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      讯飞星火:

      B树(B-tree)是一种自平衡的多路搜索树,用于存储大量数据在磁盘等直接存取辅助存储器上。一个B树中的每个节点可以有多个子节点,介于min_degree和max_degree之间,其中min_degree是B树的最小度数。

      对于给定集合 {1, 2, 3, 4, 5},要求构造最小度数为2的B树。这意味着每个非叶子节点至少有2个子节点。由于集合中只有5个元素,所以最简单的B树将是一个满二叉树,即除了叶子节点外,每个节点都恰好有2个子节点。

      下面是表示集合 {1, 2, 3, 4, 5} 的最小度数为2的所有合法B树:

      1. 最简单的情况,所有元素都在同一层,形成一个满二叉树:
      3
         / \
        1   5
       / \
      2   4
      1. 另一种可能的B树结构,其中一个中间节点包含两个子节点,而另一个中间节点包含三个子节点:
      4
         / 
        2   5
       /|   |\
      1 3   4
      1. 最后一个合法的B树结构,其中一个节点包含三个子节点,其余节点包含两个子节点:
      4
         / \
        2   5
       / \
      1   3

      以上是最小度数为2时,集合 {1, 2, 3, 4, 5} 能够形成的所有合法B树。实际上,这些B树都是满二叉树的变体,因为集合的大小正好允许构成一个完整的二叉树层。如果集合的大小不是2的幂加1,那么会有更多不同形态的B树存在。

      360智脑:

      根据最小度数为2的B树的定义,每个节点至少有两个孩子。对于包含{1,2,3,4,5}的B树,我们可以构造以下几种合法的B树:

      1. 非叶节点:1-2, 3-4, 5
      2. 非叶节点:1-3, 2-4, 5
      3. 非叶节点:1-4, 2-3, 5
      4. 非叶节点:1-5, 2-3, 4

      其中,"1-2, 3-4, 5"表示一个节点,其中存储的关键字是1和2,有两个子节点,分别是包含关键字3和4的节点,以及一个包含关键字5的叶子节点。

      因此,以上就是表示集合{1,2,3,4,5}的最小度数为2的所有合法B树。

      智谱清言:

      B树是一种平衡的多路搜索树,其中每个节点最多有两个子节点。一个合法的B树需要满足以下条件:

      1.每个节点都包含一个键(或者多个键,如果它是内部节点)和子节点的指针。

      2.根节点至少有两个子节点,除了根节点外,每个节点至少有\(\lceil \text{度数} \rceil - 1\) 个子节点。 3.每个节点包含的键的数量最多是 \(\text{度数} - 1\)。

      4.所有叶子节点都在同一层。

      5.每个节点中的键是按升序排列的。

      在这个问题中,我们要找的是度数为2的B树,这意味着每个节点最多有两个子节点。

      我们可以从根节点开始构建,因为根节点可以有一个或两个子节点。我们可以从一个键开始,然后逐步添加其他键,确保每个节点不违反B树的性质。

      下面是表示集合 {1, 2, 3, 4, 5} 的最小度数为2的所有合法B树的一个示例:

      1
             / \
            2   3
           / \
          4   5

      在这个B树中,根节点包含键1,它有两个子节点,分别是节点2和节点3。节点2和节点3分别包含键4和键5。

      这是唯一的最小度数为2的B树,因为如果你尝试将任何一个键放入一个只有单一子节点的节点中,这个B树就不再满足B树的性质。

      需要注意的是,B树的变种很多,上述只是满足题目要求的一种可能结构。在实际应用中,B树的实现可能会因具体需求而有所不同。

      天工:

      在这个问题中,我们需要找到所有合法的B树,它们满足以下条件:

      1. 集合为 {1, 2, 3, 4, 5}
      2. B树的度为2,即每个非根节点最多有2个孩子

      首先,我们需要理解一个B树的结构。对于一个度为2的B树,其节点可以包含0到2个子节点。如果一个节点包含2个子节点,那么它被称为完全填满的。如果一个节点恰好有两个子节点,并且这两个子节点都被完全填满,那么这个节点也被认为完全填满的。一个度为2,高度为h的B树,最多有 \(2^h - 1\) 个节点。

      接下来,我们可以根据这些规则生成所有可能的合法B树。

      • 高度为1(根节点):
      • 根节点有2个子节点,且这两个子节点都完全填满了。
      • 高度为2:
      • 根节点有2个子节点,第一个子节点有2个子节点且都完全填满了,第二个子节点为空。
      • 根节点有2个子节点,第一个子节点为空,第二个子节点有2个子节点且都完全填满了。
      • 高度为3:
      • 根节点有2个子节点,第一个子节点为空,第二个子节点有2个子节点且都完全填满了。
      • 根节点有2个子节点,第一个子节点有2个子节点且都完全填满了,第二个子节点为空。

      因此,满足条件的合法B树共有4棵。

      灵小智:

      合法B树是一种平衡的m叉搜索树,其中每个节点最多有m-1个关键字,最少有ceil(m/2)-1个关键字。根据要求,最小度数为2,即每个节点最多有2个关键字,最少有1个关键字。

      给定集合{1, 2, 3, 4, 5},我们可以构建以下合法B树:

      1. 根节点:
      • 关键字:2
      • 子节点:无
      1. 根节点:
      • 关键字:3
      • 子节点:
      • 左子节点:
      • 关键字:2
      • 子节点:1
      • 右子节点:
      • 关键字:4
      • 子节点:5
      1. 根节点:
      • 关键字:3
      • 子节点:
      • 左子节点:
      • 关键字:2
      • 子节点:1
      • 右子节点:
      • 关键字:4
      • 子节点:无
      • 右侧兄弟节点:
      • 关键字:5
      • 子节点:无

      这些是表示集合{1, 2, 3, 4, 5} 的最小度数为2的所有合法B树。每个节点都满足最小度数的要求,并且是平衡的m叉搜索树。

      chatgpt:

      对于表示 {1, 2, 3, 4, 5} 的最小度数为 2 的所有合法 B 树,我们可以有以下几种情况:

      1. 情况一: (3) / \ (1,2) (4,5)
      2. 情况二: (3) / \ (1,2) (4) / \ (null) (5)
      3. 情况三: (3) / \ (1,2) (null) / (4,5)

      以上是其中的一些合法的B树表示方式,每个节点的括号内表示节点的键值。请注意,由于B树是动态自平衡的数据结构,所以可能有更多的合法表示方式。

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      kimi:

      为了表示集合 {1, 2, 3, 4, 5} 的最小度数为 2 的所有合法 B 树,我们需要构建一个 B 树,其中每个内部节点至少有两个子节点,并且不超过四个子节点(因为 \(2t = 4\))。这里我们有 5 个元素,所以至少需要一个内部节点。

      以下是构建合法 B 树的步骤:

      1. 根节点:由于最小度数为 2,根节点可以有 2 个或 4 个子节点。由于我们有 5 个元素,根节点至少需要有 3 个元素(2 个分支和 1 个元素),以便能够进一步分配剩余的元素。
      2. 分配元素:我们需要将 5 个元素分配到 B 树的节点中,同时保持每个内部节点至少有 2 个子节点。
      3. 构建树:根据上述规则,我们可以构建以下两种合法的 B 树结构:
        B 树 1:
      [3]
          /     \
        [1]     [5]

      在这个 B 树中,根节点是 [3],它有两个子节点 [1] 和 [5]。每个叶子节点恰好有两个子节点,满足最小度数为 2 的要求。

      B 树 2:

      [3]
          /     \
        [1]     [4] [5]

      在这个 B 树中,根节点是 [3],它有三个子节点 [1]、[4] 和 [5]。根节点有 2 个子节点,同时还有一个元素 [4],这也满足最小度数为 2 的要求。

      这两种结构都满足最小度数为 2 的 B 树的要求。注意,B 树的构建可能不唯一,因为元素的分配可以有多种方式。但是,任何合法的 B 树都必须满足上述的度数要求。

      在实际的 B 树实现中,通常会有键值对,其中键用于搜索、插入和删除操作。在这个简单的例子中,我们只使用了元素本身作为键值,而在真实的数据库系统中,这些元素可能代表指向实际数据记录的指针或键。

      混元:

      B树(B-tree)是一种自平衡的树数据结构,它保持数据有序,允许插入、删除和查找操作在对数时间内完成。B树的度数(degree)定义为每个节点可以拥有的最大子节点数。一棵有最小度数为2的B树,除了根节点外,其他所有节点的子节点数至少为2。

      对于集合{1, 2, 3, 4, 5},我们可以构造以下几种最小度数为2的合法B树:

      1. 高度为2的B树:
      [2]
       /     \
      [1]     [4]
              /   \
            [3]   [5]
      1. 高度为3的B树:
      [3]
         /   \
       [1]   [4]
             /   \
           [2]   [5]

      在这两种情况下,每个非叶子节点(除了可能的根节点)都有两个子节点,满足了最小度数为2的条件。注意,B树的叶子节点可以包含键值,也可以不包含,这取决于具体的实现和定义。在上面的例子中,我们假设叶子节点包含键值。

      构造B树时需要确保所有的键都出现在树上,且在任何时刻,树的性质(如节点的子节点数)都得到满足。在插入和删除操作时,可能需要通过分裂或合并节点来维护这些性质。

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/10603865,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (242)-- 算法导论17.4 1题

      下一篇:文心一言 VS 讯飞星火 VS chatgpt (251)-- 算法导论18.2 4题

      相关文章

      2025-05-19 09:04:53

      ArcMap生成矢量面的外接圆或外接矩形

      ArcMap生成矢量面的外接圆或外接矩形

      2025-05-19 09:04:53
      最小 , 矩形
      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:44

      js小题2:构造函数介绍与普通函数对比

      js小题2:构造函数介绍与普通函数对比

      2025-05-19 09:04:44
      new , 关键字 , 函数 , 对象 , 构造函数
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-14 10:07:38

      30天拿下Python之函数

      在Python中,函数是一段可以重复使用的代码块,它可以提高代码的可重用性和可维护性,是编程中非常重要的概念。

      2025-05-14 10:07:38
      lambda , 代码 , 传递 , 关键字 , 函数 , 参数 , 定义
      2025-05-14 10:07:38

      30天拿下Rust之箱、包和模块

      Rust语言使用模块系统来组织工程和代码。模块系统允许我们将相关的函数、类型、常量等组织在一起,形成一个逻辑上的单元。通过模块系统,我们可以隐藏实现细节,只暴露必要的接口,从而提高代码的可读性和可维护性。

      2025-05-14 10:07:38
      Rust , 关键字 , 文件 , 模块 , 访问
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:58

      30天拿下Rust之语法大全

      Rust作为一种系统编程语言,近年来在开发者社区中逐渐崭露头角。其独特的所有权系统和内存安全特性,使得Rust在高性能、并发编程领域具有显著优势。

      2025-05-14 10:02:58
      Rust , 代码 , 关键字 , 声明 , 循环 , 注释 , 类型
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5241472

      查看更多

      最新文章

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

      2025-04-18 07:11:40

      文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

      2025-04-18 07:11:19

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      2025-04-16 09:26:39

      文心一言 VS 讯飞星火 VS chatgpt (348)-- 算法导论23.2 7题

      2025-04-16 09:26:27

      查看更多

      热门文章

      zookeeper 的数据模型

      2023-07-27 06:18:47

      无限极分类查找所有子孙节点的改进算法

      2024-05-22 10:02:04

      给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置

      2024-05-13 08:44:28

      数据节点操作

      2024-06-04 08:37:51

      【算法】哨兵思想 -- 待进一步总结

      2024-05-20 09:53:58

      弗洛伊德(Floyd's)算法—解决最短路径经典算法

      2024-11-13 09:08:40

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      文心一言 VS 讯飞星火 VS chatgpt (260)-- 算法导论19.4 1题

      文心一言 VS 讯飞星火 VS chatgpt (177)-- 算法导论13.3 6题

      常见链表专题相关算法

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      剑指 Offer 55 - I. 二叉树的深度

      Redis分区容错秘诀:解密主从模式

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号