爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      首页 知识中心 数据库 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      2025-01-08 08:37:04 阅读次数:17

      字符,编码,节点,频率

      五、证明:如果我们将字母表中字符按频率单调递减排序,那么存在一个最优编码,其码字长度是单调递增的。

      文心一言:

      为了证明这个结论,我们可以使用霍夫曼编码(Huffman Coding)作为示例,它是一种广泛使用的最优前缀编码方法。霍夫曼编码满足题目中的要求:如果我们将字母表中字符按频率单调递减排序,那么其码字长度是单调递增的。

      以下是证明过程:

      1. 构建霍夫曼树:
      • 初始化:为每一个字符创建一个节点,节点的权重等于该字符的频率。
      • 合并:选择权重最小的两个节点,将它们合并为一个新的内部节点,新节点的权重为这两个节点权重之和。
      • 重复:将新节点加入节点集合,并继续选择权重最小的两个节点进行合并,直到只剩下一个节点为止。这个节点就是霍夫曼树的根。
      1. 分配码字:
      • 从根节点开始,向左的边代表0,向右的边代表1。
      • 从根节点到每个字符节点的路径就构成了该字符的霍夫曼编码。
      1. 证明码字长度单调递增:
      • 由于我们在构建霍夫曼树时是按照字符频率单调递减的顺序来合并节点的,因此频率越高的字符越靠近根节点。
      • 从根节点到字符节点的路径长度就是该字符的码字长度。由于高频字符靠近根节点,它们的路径长度(即码字长度)相对较短。
      • 反之,低频字符远离根节点,它们的路径长度(即码字长度)相对较长。
      • 因此,按照字符频率单调递减排序后,其码字长度也是单调递增的。

      这个证明依赖于霍夫曼编码的构造过程,特别是节点合并的顺序和码字分配的方式。虽然霍夫曼编码不是唯一的最优前缀编码方法,但它是一个很好的例子,展示了如何根据字符频率构造出码字长度单调递增的编码。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      讯飞星火:

      首先,我们需要理解几个关键概念:

      1. 字符频率:指的是某个字符在文本中出现的次数或频率。
      2. 编码:为每个字符分配一个唯一的字符串(通常由0和1组成)。
      3. 码字长度:分配给每个字符的字符串的长度。
      4. 最优编码:一种编码方式,使得整个文本的编码长度最小。

      要证明存在一个最优编码,其码字长度是单调递增的,我们可以使用霍夫曼编码(Huffman Coding)算法作为参考。霍夫曼编码是一种广泛使用的最优前缀编码方法。

      下面是证明的步骤:

      假设我们有一个字母表,其中的字符按照它们的频率单调递减排序。设这个排序后的字符集合为 {c1, c2, ..., cn},其中 ci 的频率不小于 ci+1 的频率。

      1. 构建二叉树:我们从 n 个字符的集合开始,每个字符作为一个单独的节点,并以其频率作为权重。然后,我们重复以下步骤,直到所有字符都被合并到一棵树中:
      • 选出两个权重最小的节点(即频率最低的两个字符),并创建一个新的父节点,其权重等于这两个子节点的权重之和。
      • 将新的父节点加入到节点集合中,并从集合中移除那两个子节点。
      1. 由于我们是按照频率排序的,每次合并时选择的都是当前频率最低的两个节点,这保证了合并后的节点(也就是新生成的父节点)的频率不会超过其它未合并的节点。因此,合并过程中节点的频率始终保持单调性。
      2. 分配码字:当我们构建完整棵二叉树后,我们可以从根节点出发,为每个叶节点(代表原始字符)分配一个码字。我们规定左分支为“0”,右分支为“1”。由于我们的合并策略保证了较低频率的字符更靠近树的底部,这意味着较短的码字会被分配给频率较高的字符,较长的码字被分配给频率较低的字符。这就实现了码字长度的单调递增。
      3. 计算总编码长度:最优编码意味着整体编码长度最短。通过上述过程,我们得到了一个前缀编码,其中没有任何一个码字是另一个码字的前缀,并且频率高的字符有更短的码字。这样的编码确保了整个文本编码后的总长度是最小的。

      因此,我们证明了如果我们将字母表中的字符按频率单调递减排序,那么存在一个最优编码,其码字长度是单调递增的。这是通过建立一个特定的二叉树结构(如霍夫曼树)并遵循该结构的码字分配规则来实现的。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      360智脑:

      要证明这一点,我们可以使用信息论中的哈夫曼编码方法。哈夫曼编码是一种用于无损数据压缩的贪婪算法。它通过创建一个二叉树来表示字符及其出现频率,然后用路径长度来为每个字符生成唯一的码字。

      首先,我们将字母表中字符按频率从高到低排序。然后,我们构建一个二叉树,其中每个节点表示两个频率最小的字符。我们将这两个字符合并,并将它们的频率相加,作为新节点的频率。我们继续这个过程,直到只剩下一个节点,即树的根节点。

      在这个过程中,我们可以观察到,从左到右遍历树的叶子节点时,它们的频率是递减的。这是因为我们在构建树的过程中,总是将频率最小的字符组合在一起。因此,左子树中的字符频率总是小于或等于右子树中的字符频率。

      现在,我们来考虑哈夫曼编码的码字长度。在哈夫曼树中,每个节点都有两个子节点,分别表示为0和1。当我们从根节点向下移动到叶子节点时,我们会在路径上遇到一系列的0和1。对于每个字符,其码字是由路径上遇到的0和1组成的。

      由于哈夫曼树中左子树的频率小于或等于右子树的频率,所以在遍历树的过程中,我们会在路径上遇到更多的0。因此,从左到右遍历叶子节点时,它们的码字长度是递增的。

      综上所述,如果我们按照频率将字母表中字符按单调递减排序,那么存在一个最优编码,其码字长度是单调递增的。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      智谱清言:

      为了证明这个结论,我们可以采用信息论中的Kraft-McMillan不等式来进行证明。这个不等式是关于编码长度的一个重要不等式,它可以用来判断是否可以存在一个满足特定条件的编码方案。 首先,我们需要明确几个概念:

      1. 字符频率:字母表中各个字符出现的概率。
      2. 码字长度:指的是将字符编码成二进制码字时所需的平均位数。
      3. 最优编码:指的是使平均码字长度最小的编码方式。 现在,假设我们有字母表 \( \Sigma \) 和字符在 \( \Sigma \) 上的概率分布 \( P \),且 \( P \) 是单调递减的,即 \( P(a_1) \geq P(a_2) \geq \cdots \geq P(a_n) \),其中 \( a_1, a_2, \ldots, a_n \) 是 \( \Sigma \) 中的字符。我们要找的是一种编码方式,使得对于所有的字符 \( a_i \),其码字长度 \( L(a_i) \) 是单调递增的。 根据信息论中的Kraft-McMillan不等式,对于任何编码方式,都有以下不等式成立: \[ \sum_{i=1}^{n} P(a_i) \cdot [1 + L(a_i)] \geq 2^L \] 其中 \( L \) 是所有字符的平均码字长度。等号成立的条件是存在一种编码方式,使得对于所有字符 \( a_i \),其码字长度 \( L(a_i) \) 恰好等于其信息量 \( H(a_i) \)。 现在,我们来考虑这样一个特定情况:字母表中的字符按频率单调递减排序,即 \( P(a_1) \geq P(a_2) \geq \cdots \geq P(a_n) \)。根据Kraft-McMillan不等式,如果存在一个最优编码,那么码字长度 \( L(a_i) \) 应该和其信息量 \( H(a_i) \) 相等。 对于频率最高的字符 \( a_1 \),其信息量 \( H(a_1) \) 最小,因此其码字长度 \( L(a_1) \) 也应该最小。同理,对于频率最低的字符 \( a_n \),其信息量 \( H(a_n) \) 最大,码字长度 \( L(a_n) \) 也应该最大。这样,我们就得到了一个码字长度单调递增的编码方案。 综上所述,如果字母表中的字符按频率单调递减排序,那么确实存在一个最优编码,其码字长度是单调递增的。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      天工:

      要证明这个命题,我们可以使用Huffman编码算法的性质。Huffman编码算法是一种贪婪算法,用于为给定的符号集合构造最优前缀码。在Huffman算法中,我们首先根据符号出现的频率创建一个森林(每棵树代表一个符号,树的高度表示符号的码字长度),然后不断合并两个频率最低的节点,直到形成一棵树。这棵树的叶节点代表原始符号,而内部节点的频率是其子节点频率的和。

      现在,假设我们有一个按频率单调递减排序的字母表,即最频繁的字符排在最前面,频率依次递减。在这种情况下,Huffman算法将首先合并频率最低的两个字符,然后是下两个,依此类推。这意味着在每一步合并中,我们都是在合并两个当前频率最低的符号。

      由于符号是按频率排序的,所以在任何时候,我们合并的两个符号的频率之和都是当前所有剩余符号频率之和的最小值。这保证了每次合并后,新形成的节点(无论是内部节点还是叶子节点)的频率都不会大于之前任何一个单独的叶子节点的频率。因此,随着算法的进行,我们构建的树的高度(也就是码字长度)是单调递增的。

      由于Huffman编码算法保证了没有任何一个码字是另一个码字的前缀,因此我们得到的是一个最优前缀码。同时,由于我们的字母表是按照频率排序的,并且Huffman算法是贪婪的,我们得到的最优前缀码的码字长度是单调递增的。这就完成了证明。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      灵小智:

      这是一个关于最优编码问题的证明。最优编码问题是指给定一个字符集和对应的频率,我们需要设计一种编码方案,使得码字的平均长度最短。

      假设我们将字符按照频率单调递减排序,即频率最高的字符排在前面。现在要证明存在一个最优编码方案,其中码字的长度是单调递增的。

      首先,假设存在一个最优编码方案,其中码字的长度不是单调递增的。也就是说,存在两个不同的字符A和B,它们的频率满足f(A) > f(B),但是它们的码字长度满足l(A) < l(B)。

      现在我们考虑将A和B的码字交换位置,也就是将A的码字分配给B,将B的码字分配给A。此时,由于f(A) > f(B),我们可以计算出交换后的平均码字长度是否更短。

      交换后的平均码字长度变为: 原来的总码字长度 + f(A) * (l(B) - l(A)) + f(B) * (l(A) - l(B)) / 总频率

      展开计算后得到: 原来的总码字长度 + (f(A) - f(B)) * (l(B) - l(A)) / 总频率

      由于f(A) > f(B)且l(A) < l(B),因此(f(A) - f(B)) * (l(B) - l(A)) < 0,即交换后的平均码字长度一定更短。

      这与我们的假设矛盾,因为我们假设原编码方案是最优的。所以我们得出结论:存在一个最优编码方案,其中码字的长度是单调递增的。

      证毕。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      chatgpt:

      这是霍夫曼编码的基本性质,即将字符按频率单调递减排序后,使用霍夫曼编码可以得到最优编码,其中码字长度是单调递增的。

      霍夫曼编码是一种无损压缩算法,通过构建最优二叉树(霍夫曼树)来实现。在该树中,频率较高的字符会被赋予较短的编码,而频率较低的字符会被赋予较长的编码,从而达到压缩数据并保证解压时能正确还原的目的。

      由于按频率单调递减排序后,相对较高频率的字符靠近字母表前面位置,在霍夫曼树中它们通常会位于较浅层次。而相对较低频率的字符则靠近字母表后面位置,在霍夫曼树中它们通常会位于较深层次。因此,在该最优编码下,相对较高频率的字符所对应的码字长度通常比相对较低频率的字符所对应的码字长度短。

      综上所述,按照字母表中字符按频率单调递减排序后进行霍夫曼编码可以得到一个最优编码方案,其中码字长度是单调递增的。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      kimi:

      要证明这个命题,我们需要使用贪心算法的性质和最优子结构的概念。最优子结构是指一个问题的最优解包含其子问题的最优解。对于哈夫曼编码问题,最优子结构意味着任何最优编码方案的子集也是对应子集字符的最优编码方案。

      证明:

      1. 贪心选择性质:哈夫曼编码算法在每一步都选择当前最小的两个频率来构建新的编码。这种选择是贪心的,因为它在每一步都做出局部最优选择,希望这样的局部最优选择能够导致全局最优解。
      2. 最优子结构:考虑任何子问题,即字母表的一个子集及其相应的频率。对于这个子集,我们可以应用哈夫曼算法来找到最优编码。由于最优子结构的性质,这个子集的最优编码方案将包含在完整字母表的最优编码方案中。
      3. 单调递增的码字长度:如果我们将字符按频率单调递减排序,那么在构建哈夫曼编码时,我们将从频率最低的字符开始。由于贪心选择性质,我们将首先为频率最低的字符分配最短的码字。随着算法的进行,我们将为频率更高的字符分配更长的码字,因为这些字符在优先队列中出现的更晚,且它们的父节点将包含它们的频率和之前已经处理过的字符的频率。
      4. 不存在更优的非单调递增编码:假设存在一个非单调递增的最优编码方案。这意味着至少存在一个字符,它的频率低于后面的某个字符,但是它被分配了一个更长的码字。然而,根据哈夫曼算法的贪心选择性质,我们应该首先为频率更低的字符分配较短的码字。这与我们的假设矛盾,因此不存在这样的非单调递增的最优编码方案。
      5. 结论:因此,我们可以得出结论,如果字符按频率单调递减排序,那么存在一个最优编码方案,其码字长度是单调递增的。这是因为哈夫曼算法的贪心选择性质和最优子结构保证了这样的编码方案的存在性和最优性。

      这个证明基于哈夫曼编码算法的贪心策略和最优子结构的性质,展示了如何从字符频率的单调递减排序中得到一个最优的、码字长度单调递增的编码方案。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      混元:

      为了证明这个结论,我们可以使用哈夫曼编码(Huffman Coding)算法作为工具。哈夫曼编码是一种广泛用于数据压缩的算法,它为给定字母表中的字符生成具有前缀性质的编码,这意味着任何字符的编码都不是其他字符编码的前缀。为了实现这一点,哈夫曼编码使用了一个优先级队列来构建一棵哈夫曼树(Huffman Tree)。

      首先,我们假设有一个包含n个不同字符的字母表A,这些字符出现的频率分别为f1, f2, ..., fn,且满足f1 ≥ f2 ≥ ... ≥ fn。

      接下来,我们按照以下步骤构建哈夫曼树:

      1. 将每个字符及其频率看作一个元组(字符,频率),放入一个优先级队列中。优先级队列的比较标准是元组的频率,频率较小的元组具有更高的优先级。
      2. 从优先级队列中取出两个具有最高优先级的元组,并将它们合并成一个新的元组,新元组的频率是两个被合并元组的频率之和。将新元组放回优先级队列中。
      3. 重复步骤2,直到优先级队列只剩下一个元组。这个元组就是哈夫曼树的根节点。
      4. 从根节点开始,为哈夫曼树的每一个分支分配一个二进制位值(例如,左分支为0,右分支为1)。从根节点到每个叶子节点的路径组成的二进制串就是对应字符的哈夫曼编码。

      根据哈夫曼树的构建过程可知,字符的频率越高,它在树中的深度越低。因此,哈夫曼编码满足码字长度单调递增的性质。

      至此,我们证明了如果我们将字母表中字符按频率单调递减排序,那么存在一个最优编码(即哈夫曼编码),其码字长度是单调递增的。

      文心一言 VS 讯飞星火 VS chatgpt (223)-- 算法导论16.3 5题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/10213867,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (236)-- 算法导论17.3 2题

      下一篇:oracle常用命令记录

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-19 09:04:14

      C语言字符函数和字符串函数--(超全超详细)

      C语言字符函数和字符串函数--(超全超详细)

      2025-05-19 09:04:14
      函数 , 字符 , 字符串
      2025-05-14 10:03:13

      超级好用的C++实用库之Base64编解码

      Base64是一种编码方式,用于将二进制数据转换为可打印的ASCII字符。这种编码方式常用于在HTTP协议等应用中传输二进制数据,比如:图片、音频、视频等。

      2025-05-14 10:03:13
      Base64 , 字符串 , 数据 , 编码 , 长度
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:58

      超级好用的C++实用库之字符编码转换

      字符编码转换是指将文本数据从一种字符集编码格式转换为另一种字符集编码格式的过程。

      2025-05-14 10:02:58
      buffer , Unicode , 字符 , 字符集 , 编码
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:21

      grpc学习golang版( 三、proto文件数据类型 )

      grpc学习golang版( 三、proto文件数据类型 )

      2025-05-14 09:51:21
      proto , 字节 , 对应 , 示例 , 类型 , 编码
      2025-05-14 09:51:15

      java String 去掉特殊字符之前的内容

      为了去除字符串中某个特殊字符之前(包括该特殊字符本身)的所有内容,我们可以使用Java中的String类的substring和indexOf方法。

      2025-05-14 09:51:15
      字符 , 字符串 , 正则表达式 , 示例
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5233341

      查看更多

      最新文章

      【MySQL】-数据库优化(索引)

      2025-05-14 10:03:13

      java String 去掉特殊字符之前的内容

      2025-05-14 09:51:15

      java实现-13. 罗马数字转整数

      2025-05-13 09:50:17

      java实现6. Z 字形变换

      2025-05-13 09:50:17

      java实现3. 无重复字符的最长子串

      2025-05-13 09:50:17

      编辑距离

      2025-05-12 08:58:16

      查看更多

      热门文章

      字符输入流一个一个读数据

      2023-03-30 09:22:32

      字符缓冲输入流读数据 1216

      2023-03-29 09:40:27

      1223. 数字字符统计

      2023-03-21 10:30:43

      TRIM函数去掉指定字符

      2023-05-05 09:57:33

      PostgreSQL递归查询

      2023-06-19 06:57:10

      每日学习一个数据结构-AVL树

      2024-12-13 06:53:39

      查看更多

      热门标签

      数据库 mysql 字符串 数据结构 MySQL 算法 redis oracle java sql python 数据 索引 SQL 查询
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      编辑距离

      数据结构之优先队列

      考研数据结构之线性表(1.7)——练习题之已知一个带表头结点的单链表中含有3类字符(数字字符、字母字符和其他字符),编写一个函数构造三个新链表使每个链表只包含同类字符(C表示)

      【数据结构与算法】之哈希表系列-罗马数字转整数

      字符串压缩与解压(JAVA)

      【shell】数值加减乘除|运算|字符串转数字|提取数字字母小数|大小写转换

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号