爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      2025-04-11 07:03:35 阅读次数:4

      二叉,结点,节点,高度

      二、用go语言,请描述这样一棵有 n 个结点的二叉搜索树,其树中结点的平均深度为 O(lgn),但这棵树的高度是w(lgn)。一棵有 n个结点的二叉搜索树中结点的平均深度为 O(lgn),给出这棵树高度的一个渐近上界。

      文心一言:

      二叉搜索树(Binary Search Tree,BST)是一种特殊的二叉树,它对于每个节点都满足:左子树上所有节点的值均小于它的根节点的值,右子树上所有节点的值均大于它的根节点的值。

      首先,我们需要明确两个概念:深度和高度。在树中,一个节点的深度是从根节点到该节点的最长路径上的边数。树的高度是根节点的深度,也就是从根节点到最远叶子节点的最长路径上的边数。

      现在,假设我们有一棵有 n 个节点的二叉搜索树,其节点的平均深度为 O(log n)。这意味着所有节点的深度之和除以节点数 n 是 O(log n)。这并不意味着树的高度也是 O(log n),因为可能存在一些非常深的节点。

      对于二叉搜索树来说,如果它是平衡的,即对于任何节点,其左右子树的高度差不超过 1,那么树的高度就是 O(log n)。但在最坏的情况下,二叉搜索树可能退化成链表,此时高度就是 O(n)。

      所以,即使二叉搜索树的平均深度是 O(log n),我们也不能保证树的高度也是 O(log n)。实际上,树的高度可能是 O(n),这是二叉搜索树高度的一个渐近上界。这个上界在最坏情况下达到,即当树完全不平衡时。

      为了解决这个问题,我们可以使用自平衡二叉搜索树(如 AVL 树或红黑树),它们保证了树的高度始终为 O(log n),即使在插入或删除节点导致树不平衡时也能通过旋转操作恢复平衡。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      讯飞星火:

      一棵有 n 个结点的二叉搜索树的高度为 w(lgn),其中 w 是树的高度函数。为了给出这棵树高度的一个渐近上界,我们可以使用以下方法:

      1. 首先,我们知道二叉搜索树的高度 h 满足 h = log2(n+1)。因此,我们可以将 h 表示为 O(logn)。
      2. 然后,我们需要找到一个多项式函数,使得当 n 趋近于无穷大时,该函数的值趋近于 h。这个多项式函数可以是 h^2 - n*h + n = 0 的解。
      3. 通过求解这个二次方程,我们可以得到一个渐近上界。具体来说,当 n 趋近于无穷大时,h^2 - n*h + n 的值会趋近于 2n - h^2。因此,我们可以将 h 表示为 O((2n - h^2)/h)。
      4. 由于 h 和 n 都是对数函数的输入,所以 (2n - h^2)/h 是一个对数函数。因此,我们可以将 h 表示为 O(log(n))。

      综上所述,一棵有 n 个结点的二叉搜索树的高度为 O(logn)。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      360智脑:

      在Go语言中,我们可以通过定义一个二叉搜索树节点结构体来描述这棵树。这里我们假设每个节点都包含一个整数值和两个指向子节点的指针。

      type TreeNode struct {
          value int
          left  *TreeNode
          right *TreeNode
      }

      接下来,我们可以创建一个具有n个节点的二叉搜索树,其树中节点的平均深度为O(lgn)。为了实现这一点,我们可以使用一个辅助函数来生成一个深度为depth的完美二叉树,然后将剩余的节点按照中序遍历的顺序插入到树中。

      func createBST(n int) *TreeNode {
          if n <= 0 {
              return nil
          }
      
          depth := int(math.Log2(float64(n))) + 1
          root := createPerfectBinaryTree(depth)
      
          for i := n - (1 << depth) + 1; i <= n; i++ {
              root = insertNode(root, i)
          }
      
          return root
      }
      
      func createPerfectBinaryTree(depth int) *TreeNode {
          if depth <= 0 {
              return nil
          }
      
          numNodes := 1 << (depth - 1)
          root := &TreeNode{value: numNodes}
      
          for i := numNodes - 1; i >= 0; i-- {
              left := createPerfectBinaryTree(depth - 1)
              right := &TreeNode{value: i}
      
              root.left = left
              root.right = right
          }
      
          return root
      }
      
      func insertNode(root *TreeNode, value int) *TreeNode {
          if root == nil {
              return &TreeNode{value: value}
          }
      
          if value < root.value {
              root.left = insertNode(root.left, value)
          } else {
              root.right = insertNode(root.right, value)
          }
      
          return root
      }

      在这个代码中,createBST函数用于创建一个具有n个节点的二叉搜索树。首先,我们计算出树的最大深度depth,然后创建一个深度为depth的完美二叉树。接下来,我们将剩余的节点按照中序遍历的顺序插入到树中。

      对于这棵树的高度,我们已经知道它的平均深度为O(lgn)。然而,这棵树的高度可能并不是O(lgn)。实际上,最坏情况下的高度是O(n)。这是因为如果我们将所有的节点都插入到同一侧的子树中,那么树的高度就会变为O(n)。但是,这种情况在平均情况下是不会发生的,所以我们说树的高度在平均情况下是O(lgn)。

      总之,我们已经给出了一个具有n个节点的二叉搜索树,其树中节点的平均深度为O(lgn)。对于这棵树的高度,我们给出了一个渐近上界,即O(n)。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      智谱清言,代码正常运行:

      在Go语言中描述一棵具有n个结点的二叉搜索树(BST),其结点平均深度为O(lgn),但树的高度为Ω(lgn),意味着虽然每个结点的平均深度较小,但树的高度仍然很高。这种情况通常发生在不平衡的BST中,即树的某些路径上结点的数量要比其他路径多很多,导致树的高度增加。

      要给出这棵树高度的一个渐近上界,我们可以使用BST的性质。在BST中,对于任意结点,其左子树上的所有结点都小于该结点,其右子树上的所有结点都大于该结点。如果我们考虑一个具有n个结点的BST,所有这些结点都分布在不同的层级上,那么树的最高层级(即最深的层级)将包含树的根结点。

      假设树的平均深度为O(lgn),那么我们可以推断,对于树的每个层级i(i从0开始,0表示根结点所在的层级),该层级的结点数量至少为n/2^i。因为BST的结点分布在不同的层级上,所以层级i的结点数量是层级i+1的结点数量的两倍。因此,如果树的高度为h,那么我们有:

      n/2^0 + n/2^1 + n/2^2 + ... + n/2^(h-1) = n

      这是一个等比数列求和的公式,其和为n。我们可以通过求解这个等式来找到树的高度h的一个渐近上界。

      在Go语言中,我们可以定义一个BST的结构体,并实现相关的插入和遍历操作。为了计算树的平均深度和高度,我们可以在遍历树的同时计算每个层级的结点数量。

      以下是一个简化的Go语言示例,描述了一个具有n个结点的BST,并计算了树的平均深度和高度:

      package main
      import (
      	"fmt"
      	"container/list"
      )
      type TreeNode struct {
      	Value int
      	Left  *TreeNode
      	Right *TreeNode
      }
      // 创建二叉搜索树
      func CreateBST(values []int) *TreeNode {
      	if len(values) == 0 {
      		return nil
      	}
      	root := &TreeNode{Value: values[0]}
      	queue := list.New()
      	queue.PushBack(root)
      	for _, value := range values[1:] {
      	 node := queue.Front()
      		queue.Remove(node)
      		if value < node.Value {
      			if node.Left == nil {
      				node.Left = &TreeNode{Value: value}
      			} else {
      				queue.PushBack(node.Left)
      			}
      		} else {
      			if node.Right == nil {
      				node.Right = &TreeNode{Value: value}
      			} else {
      				queue.PushBack(node.Right)
      			}
      		}
      	}
      	return root
      }
      // 计算树的平均深度
      func AverageDepth(root *TreeNode) float64 {
      	if root == nil {
      		return 0
      	}
      	queue := list.New()
      	queue.PushBack(root)
      	var depthSum int
      	for queue.Len() > 0 {
      		depth := 0
      		for queue.Len() > 0 {
      			node := queue.Front()
      			queue.Remove(node)
      			depth++
      			if node.Left != nil {
      				queue.PushBack(node.Left)
      			}
      			if node.Right != nil {
      				queue.PushBack(node.Right)
      			}
      		}
      		depthSum += depth
      	}
      	return float64(depthSum) / float64(len(queue))
      }
      // 计算树的高度
      func Height(root *TreeNode) int {
      	if root == nil {
      		return 0
      	}
      	queue := list.New()
      	queue.PushBack(root)
      	height := 0
      	for queue.Len() > 0 {
      		height++
      		for queue.Len() > 0 {
      			node := queue.Front()
      			queue.Remove(node)
      			if node.Left != nil {
      				queue.PushBack(node.Left)
      			}
      			if node.Right != nil {
      				queue.PushBack(node.Right)
      			}
      		}
      	}
      	return height
      }
      func main() {
      	values := []int{10, 20, 30, 40, 50, 25}
      	root := CreateBST(values)
      	fmt.Println("Average depth:", AverageDepth(root))
      	fmt.Println("Height:", Height(root))
      }

      这个示例创建了一棵具有6个结点的BST,并计算了树的平均深度和高度。平均深度为O(lgn),高度为Ω(lgn)。根据BST的性质,我们可以得出树的高度的一个渐近上界为O(n)。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      通义千问:

      在二叉搜索树中,一棵有 n 个节点的树的高度(即最大深度)通常被表示为 h。根据二叉搜索树的性质,对于包含 n 个节点的完美平衡二叉搜索树,其高度 h 是 log2(n+1)(这是因为完美平衡的二叉树中,每个节点的左右子树大小都相差不超过1,这样可以使得树的高度最小)。这个高度 h 是树中所有节点的平均深度的一个上限,因为在最坏的情况下,所有的节点都在树的最大深度上。

      然而,题目中提到的这棵树的高度是 w(lgn),其中 w 是一个增长率可能大于或小于 1 的函数。尽管这棵树的平均节点深度仍然是 O(lgn),但高度的增加可能会导致一些节点的深度增大。

      由于平均深度仍然是 O(lgn),我们可以得出一个结论:这棵树虽然不是完全平衡的,但在整体上仍然保持了一定的平衡性,即大部分节点的深度接近于平均深度。

      至于这棵树高度的一个渐近上界,由于平均深度为 O(lgn),我们可以推断树的高度 h 必须满足 h <= O(lgn)。这是因为如果高度大于 O(lgn),那么必然存在许多节点的深度大于 O(lgn),从而使得平均深度超过 O(lgn),与题目条件矛盾。

      所以,这棵树高度的一个渐近上界是 O(lgn)。不过具体的上界还取决于 w 函数的性质,如果 w 是一个非常慢增长的函数,那么实际的高度上界可能会更小。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      天工:

      二叉搜索树中结点的平均深度为O(lgn),意味着每一层的节点数量大致相等,即每一层的节点数量呈等差数列分布。因此,我们可以使用鸽巢归并排序(pigeonhole principle)来证明这棵树的高度的渐近上界。

      假设二叉搜索树中每个节点的值都是不同的整数,并且每一层的节点数量大致相等。那么,根据鸽巢归并排序,至少有ceil(logn/log2)个鸽巢,每个鸽巢代表了一个节点的值。由于每个节点的值是不同的,所以最多只有ceil(logn/log2)个节点。因此,这棵树的高度的一个渐近上界为ceil(logn/log2)。

      注意,这个结论是一个渐近上界,实际的树的高度可能会超过这个界限,但是无法小于这个界限。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      灵小智:

      根据题目描述,我们需要构建一棵有n个结点的二叉搜索树,其结点的平均深度为O(lgn),但高度为w(lgn)。首先,让我们来了解一些基本概念。

      在一棵二叉搜索树中,每个结点都包含一个键值,并且满足以下性质:

      • 左子树中的所有结点的键值小于根结点的键值。
      • 右子树中的所有结点的键值大于根结点的键值。
      • 左子树和右子树也是二叉搜索树。

      结点的深度是指从根结点到该结点的路径长度,而树的高度是指从根结点到最远叶子结点的路径长度。

      给定n个结点的二叉搜索树,每个结点的平均深度为O(lgn)。这意味着对于任意结点,其深度与树的高度之间存在一定的关系。具体而言,平均深度为O(lgn)表示在树中,大部分结点的深度不会远离O(lgn)。

      然而,树的高度被限制为w(lgn),这意味着整个树的高度不能超过w(lgn)。这是一种特殊情况,其中树的高度相对于平均深度被限制。所以我们需要寻找一个渐近上界来描述这棵树的高度。

      根据二叉搜索树的性质,当以有序序列构建树时,树的高度会达到最大值。因此,我们可以考虑以有序序列构建树的情况。

      在有序序列中,每次选择中间元素作为根结点来构建二叉搜索树。这样的构建方式会导致生成一棵高度为w(lgn)的树。由于树的高度是由有序序列的排列顺序决定的,我们可以使用最坏情况下的排序顺序来估计高度的渐近上界。

      最坏情况下,当有序序列按递增或递减顺序排列时,二叉搜索树的高度将达到最大值。在这种情况下,树的高度将是n-1,因为每个结点都只有一个孩子。

      因此,这棵有n个结点的二叉搜索树的高度的渐近上界为n-1。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      chatgpt:

      对于一棵有 n 个结点的二叉搜索树,其节点的平均深度为 O(lgn),这意味着在平均情况下,从根节点到任意一个叶子节点的路径长度是以对数级别增长的。

      然而,这棵树的高度并不会保持在 O(lgn) 的范围内。由于二叉搜索树是动态数据结构,插入和删除操作可能导致树结构不平衡。当插入或删除操作导致树中出现极端情况时,例如按照升序或降序插入元素,则该二叉搜索树可能退化成链表状结构,使得树的高度达到线性级别(w(lgn))。

      因此,在最坏情况下,一棵有 n 个结点的二叉搜索树的高度可以达到 O(n),即线性级别。这种情况通常发生在不平衡的插入或删除操作中。

      总结起来,虽然二叉搜索树平均情况下具有 O(lgn) 的节点平均深度,但它在最坏情况下可能具有 O(n) 的高度。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      kimi:

      在这个问题中,我们需要描述一棵具有特定属性的二叉搜索树(BST),即树中节点的平均深度为 O(logn),但树的高度为 O(ω(logn)),其中 ω 是一个非常慢增长的函数,表示高度增长速度远低于 logn。为了构建这样的 BST,我们可以考虑以下方法:

      1. 首先,创建一个平衡的二叉搜索树,例如 AVL 树或红黑树。这些树在插入和删除操作后会自动调整,以保持树的高度接近 O(logn)。在这种情况下,树中节点的平均深度接近 O(logn)。
      2. 接下来,为了增加树的高度,我们可以在某些路径上插入额外的节点。具体来说,我们可以在树的某些层上插入多个具有相同值的节点。这样,树的高度将增加,因为这些层的节点数量将大于 logn。然而,我们需要确保这些额外的节点不会影响树的平衡性,否则树可能会变得非常不平衡,导致性能下降。
      3. 为了满足树的高度为 O(ω(logn)) 的条件,我们需要选择一个增长速度非常慢的函数 ω。例如,我们可以选择 ω(x) = 2(log2(x))。这样,树的高度将远低于 logn,同时仍然满足 O(ω(logn)) 的条件。

      现在,我们来给出这棵树高度的一个渐近上界。由于树的高度为 O(ω(logn)),我们可以得出以下结论:

      树的高度 <= C * ω(logn)

      其中 C 是一个常数。我们可以选择一个足够大的 C,使得树的高度满足 O(ω(logn)) 的条件。例如,我们可以取 C = 2(log2(n)),这样:

      树的高度 <= 2(log2(n)) * ω(logn)

      由于 ω(x) = 2(log2(x)),我们可以将上式简化为:

      树的高度 <= 2(log2(n)) * 2(log2(logn))

      树的高度 <= 2(log3(n))

      这个上界表示了具有给定属性的二叉搜索树的高度。需要注意的是,这个上界可能不是严格的,但它给出了一个关于树高度的合理估计。在实际应用中,我们可以根据具体需求调整树的结构和参数,以满足不同的性能和高度要求。

      文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/8890616,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (177)-- 算法导论13.3 6题

      下一篇:文心一言 VS 讯飞星火 VS chatgpt (159)-- 算法导论12.3 6题

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      2025-05-13 09:51:17

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      2025-05-13 09:51:17
      ORA , rac , 节点
      2025-05-13 09:51:17

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      2025-05-13 09:51:17
      dg , rac , 日志 , 节点
      2025-05-13 09:50:28

      翻转二叉树,​​101. 对称二叉树​

      翻转二叉树给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

      2025-05-13 09:50:28
      Node , root , val , 二叉树 , 翻转 , 节点
      2025-05-13 09:50:28

      分隔链表-146. LRU 缓存

      给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。

      2025-05-13 09:50:28
      int , key , LinkedHashMap , 缓存 , 节点 , 链表
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5265881

      查看更多

      最新文章

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

      2025-04-18 07:11:40

      文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

      2025-04-18 07:11:19

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      2025-04-16 09:26:39

      文心一言 VS 讯飞星火 VS chatgpt (348)-- 算法导论23.2 7题

      2025-04-16 09:26:27

      查看更多

      热门文章

      1791. 找出星型图的中心节点

      2023-02-13 07:55:59

      zookeeper 的数据模型

      2023-07-27 06:18:47

      无限极分类查找所有子孙节点的改进算法

      2024-05-22 10:02:04

      给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置

      2024-05-13 08:44:28

      数据节点操作

      2024-06-04 08:37:51

      【算法】之二叉搜索树(BST)

      2024-06-03 09:09:56

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      文心一言 VS 讯飞星火 VS chatgpt (181)-- 算法导论13.4 4题

      文心一言 VS 讯飞星火 VS chatgpt (176)-- 算法导论13.3 5题

      数学建模算法与应用 第4章 图与网络模型及其求解方法

      文心一言 VS 讯飞星火 VS chatgpt (255)-- 算法导论18.3 1题

      文心一言 VS 讯飞星火 VS chatgpt (177)-- 算法导论13.3 6题

      文心一言 VS 讯飞星火 VS chatgpt (253)-- 算法导论18.2 6题

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号