爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      首页 知识中心 软件开发 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      2025-01-16 09:14:17 阅读次数:14

      元素,数组,算法

      三、用go语言,假设我们在 COUNTING-SORT的第 10行循环的开始部分,将代码改写为:

      10 for j = 1 to A.length

      试证明该算法仍然是正确的。它还稳定吗?

      文心一言:

      首先,让我们先明确 COUNTING-SORT 算法的基本思想。COUNTING-SORT 是一种线性时间复杂度的排序算法,它适用于对一定范围内的整数进行排序。它的基本思想是,通过统计每个元素在待排序数组中出现的次数,然后根据这个次数将元素放到对应的位置上。

      COUNTING-SORT 算法的正确性是基于以下两个关键假设:

      1.输入是整数,并且范围在一定范围内。

      2.输入数组中的元素都是非负数。

      现在,让我们看看你提供的代码更改。第10行的代码是从1循环到A的长度。这个循环的开始部分并没有改变 COUNTING-SORT 算法的基本逻辑,因此这个修改不会影响算法的正确性。

      关于稳定性,COUNTING-SORT 算法是稳定的,因为它不改变等值元素的相对顺序。即使我们改变了循环的开始部分,也不会影响 COUNTING-SORT 的稳定性。

      总的来说,这个修改不会影响 COUNTING-SORT 算法的正确性和稳定性。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      讯飞星火:

      首先,我们需要了解COUNTING-SORT算法的基本思想。COUNTING-SORT是一种线性时间复杂度的排序算法,它通过计算每个元素在数组中出现的次数来确定其在排序后的位置。这个算法是稳定的,因为它会保持相等元素的相对顺序。

      现在我们来分析给定的代码片段:

      10  for j = 1 to A.length

      这段代码表示在第10行循环的开始部分,我们将原来的计数范围从整个数组A的长度改为了从1到A.length。这意味着我们只对数组中的正数进行计数排序。由于COUNTING-SORT算法本身是稳定的,所以这个修改不会影响到算法的正确性和稳定性。

      为了证明这一点,我们可以分析一下COUNTING-SORT算法的关键步骤:

      1.初始化计数数组C,长度为A.length+1,并将所有元素设置为0。

      2.遍历数组A,对于每个元素x,将其计数值累加到C[x]中。

      3.遍历计数数组C,对于每个非零元素,将其值作为步长,将对应的索引值放入结果数组B中。

      4.将结果数组B复制回原数组A。

      由于我们只对正数进行计数排序,所以在第2步和第3步中,我们只需要处理数组A中的正数。这并不会影响算法的正确性,因为我们仍然会对所有的元素进行计数排序。同时,由于COUNTING-SORT算法本身是稳定的,所以我们不需要担心排序后的结果会发生变化。

      综上所述,将代码改写为for j = 1 to A.length并不会影响到COUNTING-SORT算法的正确性和稳定性。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      360智脑:

      为了证明该算法仍然是正确的,我们需要先理解 COUNTING-SORT 算法的本质。

      COUNTing Sort 的核心思想是:通过不断累加每个元素出现的次数,最终得到一个有序的数列。

      具体来说,我们遍历数组 A,将每个元素出现的次数存储在一个数组 count 中。然后再次遍历数组,依次将每个元素的值与 count[i] 进行比较,如果 count[i] > i,则交换 A[i] 和 A[count[i]] 的位置。这样,每次交换都会将当前最大数移动到数组的正确位置。

      现在来看题目中给出的改写版本:

      10 for j = 1 to A.length

      这里的循环范围是 j = 1 到 A.length,这与 COUNTING-SORT 算法的描述不符。因此,该版本的 COUNTING-SORT 算法是错误的。

      至于稳定性问题,COUNTing Sort 算法是稳定的。稳定性是指排序前后相同元素的顺序不会因为排序过程中的交换而改变。在 COUNTING-SORT 算法中,每次交换都会将当前最大数移动到数组的正确位置,因此相同元素的顺序不会改变。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      智谱清言:

      为了证明算法的正确性,我们需要分析代码的逻辑以及它的迭代过程。首先,我们需要了解 COUNTING-SORT 算法的基本原理。COUNTING-SORT 是一种基于计数的排序算法,它通过计算每个元素出现的次数来对列表进行排序。

      算法的伪代码如下:

      1.初始化一个长度为 n+1 的数组 count,用于存储每个元素出现的次数。

      2.遍历输入列表 A,将 count[a] 加 1。

      3.再次遍历输入列表 A,将每个元素 a 插入到其计数数组 count[a] 的末尾。

      4.返回计数数组 count。

      现在我们来看看将第 10 行的循环开始部分改写为for j = 1 to A.length后的算法逻辑。假设我们将第 10 行改写后的代码为 B,原始代码为 A。

      算法 B 的逻辑如下:

      1.初始化一个长度为 n+1 的数组 count,用于存储每个元素出现的次数。

      2.遍历输入列表 A,将 count[a] 加 1。

      3.再次遍历输入列表 A,将每个元素 a 插入到其计数数组 count[a] 的末尾。

      3.a.如果 count[a] = 0,说明元素 a 尚未出现,插入到数组 count 的末尾。

      3.b.否则,插入到 count[a] 的末尾。

      4.返回计数数组 count。

      我们可以发现,算法 B 与算法 A 的逻辑相同,只是在遍历输入列表 A 时,判断了 count[a] 是否为 0。由于我们在第 10 行将循环开始部分改写为for j = 1 to A.length,这个判断不会影响算法的正确性。

      接下来,我们需要证明算法 B 是稳定的。稳定的排序算法要求相同元素在排序后保持相对顺序不变。在 COUNTING-SORT 算法中,相同元素的计数是累加的,所以在插入相同元素时,它们会按照计数从小到大的顺序插入。因此,算法 B 是稳定的。

      综上所述,将 COUNTING-SORT 算法的第 10 行循环开始部分改写为for j = 1 to A.length后,算法仍然正确,并且稳定。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      通义千问:

      该算法仍然是正确的,因为在 COUNTING-SORT 中,每个元素只会被比较一次,而在这个改写后的代码中,每个元素也只会被比较一次。因此,该算法的时间复杂度仍然是 O(n+k),其中 n 是元素的个数,k 是桶的个数。

      关于稳定性,我们可以注意到,在原来的代码中,如果两个元素的值相等,它们的相对位置是不会改变的,因此它们在排序后的位置也是相同的。而在改写后的代码中,如果两个元素的值相等,它们的相对位置也是不会改变的,因此它们在排序后的位置也是相同的。因此,该算法是稳定的。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      天工:

      COUNTING-SORT 算法的核心思想是对一个数组进行计数排序,其时间复杂度为 O(n+k),其中 k 为数组中的最大值。

      在 COUNTING-SORT 算法的第 10 行循环的开始部分,原本的代码是:

      9  for j = 1 to A.length
      10  for i = 1 to A[j]

      这段代码的作用是对数组 A 中的元素进行计数排序。其中变量 j 表示数组 A 中的元素值,变量 i 表示当前元素值 j 出现的次数。

      将代码改写为:

      9  for j = 1 to A.length
      10  for i = 1 to j

      这段代码的作用也是对数组 A 中的元素进行计数排序。其中变量 j 表示数组 A 中的元素值,变量 i 表示当前元素值 j 出现的次数。

      这两种代码的作用是相同的,都是对数组 A 中的元素进行计数排序。因此,无论是使用第一种代码还是第二种代码,COUNTING-SORT 算法都是正确的。

      至于算法是否稳定,这要看具体实现。在 COUNTING-SORT 算法中,如果在计数排序的过程中,相同元素的相对顺序不发生改变,那么该算法就是稳定的。而在原代码和改写后的代码中,计数排序的过程并没有改变相同元素的相对顺序,因此这两种代码实现的 COUNTING-SORT 算法都是稳定的。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      chatgpt:

      对于给定的COUNTING-SORT算法,将第10行的循环开始部分代码改写为"for j = 1 to A.length"并不会影响算法的正确性。原始的COUNTING-SORT算法的第10行循环迭代的是从A中的第二个元素开始到最后一个元素,而改写后的代码也正是迭代从A的第二个元素开始到最后一个元素。

      COUNTING-SORT算法是计数排序的一种实现,它通过统计每个元素出现的次数,进而确定每个元素在排序后的位置。这个算法的正确性不依赖于循环的起始位置,只要循环能够覆盖到所有需要排序的元素,即可保证算法的正确性。

      至于稳定性,COUNTING-SORT算法的稳定性是基于元素在输出数组中的位置与其在输入数组中的位置相对应。改写第10行循环开始部分后,算法仍然会保持相同的输出顺序,因此,COUNTING-SORT算法改写后仍然是稳定的。

      文心一言 VS 讯飞星火 VS chatgpt (86)-- 算法导论8.2 3题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/7350828,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:用go语言,给定一个整数数组 nums 和一个正整数 k, 找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。

      下一篇:文心一言 VS 讯飞星火 VS chatgpt (85)-- 算法导论8.2 2题

      相关文章

      2025-05-19 09:04:14

      《剑指Offer》搜索算法题篇——更易理解的思路~

      《剑指Offer》搜索算法题篇——更易理解的思路~

      2025-05-19 09:04:14
      算法
      2025-05-19 09:04:14

      复杂度的OJ练习

      复杂度的OJ练习

      2025-05-19 09:04:14
      代码 , 复杂度 , 思路 , 数组 , 算法
      2025-05-19 09:04:14

      背包问题——“0-1背包”,“完全背包”(这样讲,还能不会?)

      背包问题——“0-1背包”,“完全背包”(这样讲,还能不会?)

      2025-05-19 09:04:14
      动态规划 , 算法
      2025-05-16 09:15:24

      Redis Set集合

      Redis Set集合

      2025-05-16 09:15:24
      set , 个数 , 元素 , 示例 , 集合
      2025-05-16 09:15:24

      如何将一串数字用函数的方法倒过来(C语言)

      如何将一串数字用函数的方法倒过来(C语言)

      2025-05-16 09:15:24
      函数 , 数字 , 数组
      2025-05-16 09:15:24

      jQuery遍历对象、数组、集合

      jQuery遍历对象、数组、集合

      2025-05-16 09:15:24
      jQuery , 对象 , 数组 , 遍历 , 集合
      2025-05-16 09:15:17

      多源BFS问题(4)_地图分析

      多源BFS问题(4)_地图分析

      2025-05-16 09:15:17
      单元格 , 算法 , 网格 , 距离
      2025-05-16 09:15:17

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      2025-05-16 09:15:17
      回溯 , 子集 , 数组 , 算法 , 递归
      2025-05-16 09:15:17

      多源BFS问题(2)_飞地的数量

      多源BFS问题(2)_飞地的数量

      2025-05-16 09:15:17
      bfs , grid , 单元格 , 算法
      2025-05-16 09:15:17

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      2025-05-16 09:15:17
      BFS , lt , 复杂度 , 算法
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5242334

      查看更多

      最新文章

      复杂度的OJ练习

      2025-05-19 09:04:14

      Redis Set集合

      2025-05-16 09:15:24

      如何将一串数字用函数的方法倒过来(C语言)

      2025-05-16 09:15:24

      【数据结构】详细介绍串的简单模式匹配——朴素模式匹配算法

      2025-05-14 10:33:31

      超级好用的C++实用库之sha256算法

      2025-05-14 10:33:25

      30天拿下Rust之向量

      2025-05-14 10:33:16

      查看更多

      热门文章

      Python:关于有序序列元素查找

      2023-02-13 07:38:09

      Arrays类的使用

      2023-06-08 06:23:00

      数据结构与算法之七 栈

      2022-11-17 12:37:20

      python学习(6)——列表元素的添加、删除、修改及排序

      2023-05-22 03:00:29

      Python|统计匹配物品的数量

      2023-01-04 10:17:07

      Python打乱列表/数组原顺序,新列表/数组中元素随机分布

      2023-04-13 09:36:44

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      数据结构与算法(Python语言)----冒泡、选择、插入三种排序算法对比

      34. 在排序数组中查找元素的第一个和最后一个位置

      手写代码:局部最小值问题。数组无序,相邻元素不等。如何求极小值?

      SpringMVC-关于文件的下载

      DS初阶:循环队列的实现

      文心一言 VS 讯飞星火 VS chatgpt (36)-- 算法导论5.3 6题

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号