爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      2025-01-16 09:30:08 阅读次数:14

      复杂度,排序,数组,递归

      二、如果用go语言,证明:在最好情况下,快速排序的运行时间为 Ω(nlgn)。

      文心一言:

      在最好情况下,快速排序的运行时间为Ω(nlgn)的证明如下:

      快速排序是一种分治算法,它将一个数组分成两个子数组,然后对这两个子数组分别进行排序。在最好情况下,每次划分都能将数组等分,即每次划分后得到的两个子数组的长度相等。

      假设数组的长度为n,每次划分需要的时间为O(n),因为需要遍历整个数组来找到枢轴元素。在最好情况下,快速排序需要进行log(n)次划分,因为每次划分都会将数组的长度减半。因此,总的时间复杂度为O(nlog(n))。

      由于log(n)是关于n的对数函数,其增长速度非常慢,因此我们可以忽略掉常数系数,认为在最好情况下,快速排序的时间复杂度为Ω(nlog(n))。

      综上所述,在最好情况下,快速排序的运行时间为Ω(nlgn)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      讯飞星火:

      在最好情况下,快速排序的运行时间为 O(n log n)。以下是使用 Go 语言实现的快速排序算法:

      package main
      
      import (
      	"fmt"
      )
      
      func quickSort(arr []int, low, high int) {
      	if low < high {
      		pivot := partition(arr, low, high)
      		quickSort(arr, low, pivot-1)
      		quickSort(arr, pivot+1, high)
      	}
      }
      
      func partition(arr []int, low, high int) int {
      	pivot := arr[high]
      	i := low - 1
      	for j := low; j < high; j++ {
      		if arr[j] < pivot {
      			i++
      			arr[i], arr[j] = arr[j], arr[i]
      		}
      	}
      	arr[i+1], arr[high] = arr[high], arr[i+1]
      	return i + 1
      }
      
      func main() {
      	arr := []int{10, 7, 8, 9, 1, 5}
      	n := len(arr)
      	quickSort(arr, 0, n-1)
      	fmt.Println("Sorted array is:", arr)
      }

      在这个实现中,我们使用了 Hoare 分区方案,它的时间复杂度为 O(log n)。由于我们需要对数组进行 n 次分区操作,所以最好情况下的运行时间为 O(n log n)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      360智脑:

      快速排序是一种基于分治思想的排序算法,它的基本思路是在待排序序列中选择一个基准元素,将小于等于基准元素的数放在其左边,大于等于基准元素的数放在其右边,然后对左右两个子序列分别进行递归操作。当子序列的长度小于等于1时,递归终止。

      在最坏情况下,快速排序的时间复杂度为 O(n^2)。但是这种情况发生的概率较小,通常快速排序的性能都比较好,因此不需要特别考虑最坏情况。

      在最好情况下,假设每次分割都能将序列分成大小几乎相等的两个子序列,此时快速排序的运行时间为 O(n log n)。

      在go语言中,可以使用以下代码实现快速排序:

      func quicksort(arr []int, left int, right int) { 
      
          if left < right { 
      
              pivotIndex := partition(arr, left, right) // 分区函数 
      
              quicksort(arr, left, pivotIndex-1) 
      
              quicksort(arr, pivotIndex+1, right) 
      
          } 
      
      } 
      
       
      
      func partition(arr []int, left int, right int) int { 
      
          pivot := arr[right] 
      
          i, j := left, right 
      
          while i < j { 
      
              while i < j && arr[i] <= pivot { 
      
                  i++ 
      
              } 
      
              arr[i], arr[j] = arr[j], arr[i] 
      
              while i < j && arr[j] >= pivot { 
      
                  j-- 
      
              } 
      
              arr[j], arr[i] = arr[i], arr[j] 
      
          } 
      
          arr[j], arr[i] = arr[i], arr[j] 
      
          return j 
      
      }

      在go语言中,可以使用递归实现快速排序,时间复杂度与快速排序相同。在最好情况下,快速排序的时间复杂度为 O(n log n),但是在实际应用中,由于随机选取基准元素等因素的干扰,快速排序的性能并不一定最优。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      chatglm:

      在最好情况下,快速排序的运行时间为 Ω(nlgn)。我们可以通过分析快速排序的递归过程来证明这一结论。

      在最好情况下,快速排序的递归树呈线性状,即每一次划分都能将数组均匀地分为两个部分。这时,递归树的深度为 n,每一次划分的时间复杂度为 O(lgn)。由于递归树的深度为 n,所以快速排序的运行时间复杂度为 O(n * O(lgn)) = Ω(nlgn)。

      下面是使用 Go 语言实现快速排序的代码,并证明了在最好情况下,其运行时间为 Ω(nlgn):

      package main
      import "fmt"
      func quicksort(values []int, left, right int) {  
         if left < right {  
             pivotIndex := partition(values, left, right)  
             quicksort(values, left, pivotIndex-1)  
             quicksort(values, pivotIndex+1, right)  
         }  
      }
      func partition(values []int, left, right int) int {  
         pivotIndex := left  
         for i := left; i < right; i++ {  
             if values[i] < values[pivotIndex] {  
                 values[i], values[pivotIndex] = values[pivotIndex], values[i]  
                 pivotIndex++  
             }  
         }  
         values[pivotIndex], values[right] = values[right], values[pivotIndex]  
         return pivotIndex  
      }
      func main() {  
         values := []int{9, 7, 5, 11, 12, 2, 14, 3, 10, 6}  
         n := len(values)  
         quicksort(values, 0, n-1)  
         fmt.Println("Sorted array:", values)  
      }

      在上述代码中,quicksort函数负责对一个子数组进行快速排序,partition函数负责进行划分操作。在最好情况下,每次划分都能将数组均匀地分为两个部分,此时递归树的深度为 n,每一次划分的时间复杂度为 O(lgn)。因此,快速排序的运行时间为 Ω(nlgn)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      通义千问:

      首先,我们需要知道快速排序的基本思路:通过选择一个 pivot(枢纽)元素,将序列分为两个部分,左边的元素都小于 pivot,右边的元素都大于 pivot。然后递归地对左右两部分进行排序。

      快速排序的最坏情况是当每次划分都以最大或最小的元素作为 pivot,这样会导致序列被分为只包含一个元素的两个部分,需要进行 n-1 次划分才能排序完毕,因此最坏情况下的时间复杂度为 O(n^2)。

      但是,在最好情况下,每次划分都能将序列分为大小基本相等的两个部分,这样只需要进行 logn 次划分就能排序完毕,因此最好情况下的时间复杂度为 O(nlogn)。

      证明最好情况下的时间复杂度为 Ω(nlgn) 可以使用数学归纳法:

      1.当 n=1 时,快速排序的时间复杂度为 O(1) = 1,满足 Ω(nlgn) 的要求。

      2.假设 n=k 时,快速排序的时间复杂度为 Ω(klgn),则对于 n=k+1 的情况,我们可以考虑划分后序列的两个部分:

      2.1.如果左边部分的长度为 k,则递归调用快速排序的时间复杂度为 Ω(klgn);

      2.2.如果左边部分的长度为 k-1,则递归调用快速排序的时间复杂度为 Ω((k-1)lgn)。

      因此,整个快速排序的时间复杂度为 O(klgn) + O((k-1)lgn) = O(klgn)。 由于 n=k+1 时的情况满足了 Ω(nlgn) 的要求,因此对于 n=k+1 的情况,快速排序的时间复杂度也为 Ω(nlgn)。 综上所述,快速排序的最好情况下的时间复杂度为 Ω(nlgn)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      天工:

      好的,下面是证明的步骤:

      假设有一个长度为 n 的有序数组 arr,我们要对它进行快速排序。在最坏情况下,每次选取的基准值都是数组的最后一个元素,此时快速排序的时间复杂度是 O(n^2)。

      在最好情况下,每次选取的基准值都能够将数组划分成两个大小相等的子数组,此时快速排序的时间复杂度是 O(nlogn)。

      我们来证明最好情况下,快速排序的时间复杂度为 O(nlogn):

      假设选取的基准值为 p,那么划分后的子数组 arr[p:] 和 arr[:p] 的长度分别为 (n-p)/2。

      因为 p 是选取的基准值,所以 arr[p:] 中的所有元素都小于 p,而 arr[:p] 中的所有元素都大于等于 p。

      因此,我们可以递归地对 arr[p:] 和 arr[:p] 分别进行快速排序。

      在最坏情况下,每次选取的基准值都是数组的最后一个元素,即 arr[n-1]。因此,每次划分后,子数组的长度都是 (n-1)/2,而每次递归的时间复杂度为 O(nlogn),因此总时间复杂度为 O(nlogn)。

      综上所述,最好情况下,快速排序的时间复杂度为 O(nlogn)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      chatgpt:

      在最好情况下,快速排序的运行时间为 Ω(n log n) 是由于快速排序算法的特性所决定的。

      快速排序是一种基于分治法的排序算法。它选择一个基准元素,将数组分割成两个子数组,其中一个子数组中的所有元素都小于基准元素,而另一个子数组中的所有元素都大于基准元素。然后对这两个子数组递归地应用快速排序算法。

      在最好情况下,每次选择的基准元素都能够将数组均匀分割,使得每一次递归都能选择到一个大小接近一半的子数组。这样,快速排序的递归树的深度就是 Θ(log n),而每层递归的时间复杂度是 Θ(n)。因此,在最好情况下,快速排序的时间复杂度为 Ω(n log n)。

      需要注意的是,在最坏情况下,快速排序的时间复杂度为 O(n^2),当选择的基准元素总是导致不均匀的分割时,递归树的深度将达到 n,每层递归的时间复杂度是 Θ(n)。因此,在最坏情况下,快速排序的运行时间会变慢。

      总结起来,在最好情况下,快速排序的运行时间为 Ω(n log n),在最坏情况下,运行时间为 O(n^2)。

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      总结

      文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/7150617,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (75)-- 算法导论7.2 4题

      下一篇:算法思想总结:哈希表

      相关文章

      2025-05-19 09:05:01

      【手把手带你刷好题】—— 61.按顺序打印i~j(递归)

      【手把手带你刷好题】—— 61.按顺序打印i~j(递归)

      2025-05-19 09:05:01
      打卡 , 递归
      2025-05-19 09:04:14

      复杂度的OJ练习

      复杂度的OJ练习

      2025-05-19 09:04:14
      代码 , 复杂度 , 思路 , 数组 , 算法
      2025-05-16 09:15:24

      如何将一串数字用函数的方法倒过来(C语言)

      如何将一串数字用函数的方法倒过来(C语言)

      2025-05-16 09:15:24
      函数 , 数字 , 数组
      2025-05-16 09:15:24

      jQuery遍历对象、数组、集合

      jQuery遍历对象、数组、集合

      2025-05-16 09:15:24
      jQuery , 对象 , 数组 , 遍历 , 集合
      2025-05-16 09:15:17

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      2025-05-16 09:15:17
      回溯 , 子集 , 数组 , 算法 , 递归
      2025-05-16 09:15:17

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      2025-05-16 09:15:17
      BFS , lt , 复杂度 , 算法
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-16 09:15:10

      BFS解决FloodFill算法(3)_岛屿的最大面积

      BFS解决FloodFill算法(3)_岛屿的最大面积

      2025-05-16 09:15:10
      grid , 复杂度 , 算法
      2025-05-14 10:33:31

      计算机小白的成长历程——数组(1)

      计算机小白的成长历程——数组(1)

      2025-05-14 10:33:31
      strlen , 个数 , 元素 , 内存 , 十六进制 , 地址 , 数组
      2025-05-14 10:33:31

      计算机小白的成长历程——习题演练(函数篇)

      计算机小白的成长历程——习题演练(函数篇)

      2025-05-14 10:33:31
      函数 , 字符串 , 数组 , 知识点 , 编写 , 迭代 , 递归
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5242452

      查看更多

      最新文章

      递归,搜索,回溯算法(3)之穷举,暴搜,深搜,回溯,剪枝

      2025-05-16 09:15:17

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      2025-05-16 09:15:17

      BFS解决FloodFill算法(3)_岛屿的最大面积

      2025-05-16 09:15:10

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      【30天玩转python】数据分析与可视化

      2025-05-06 09:19:30

      蓝桥杯算法竞赛系列第九章·巧解哈希题,用这3种数据类型足矣

      2025-04-22 09:27:17

      查看更多

      热门文章

      前端项目实战66-数组数据处理详解

      2023-05-12 06:47:16

      20.6.4算法心得(数组运用)

      2023-03-21 10:39:47

      字节输入流读数据 使用字节数组

      2023-03-29 09:42:23

      【Tableau Desktop 企业日常问题25】Tableau 如何实现自定义控件排序?

      2023-06-12 09:26:26

      算法基础之递归

      2023-07-07 07:45:50

      堆排序

      2023-07-28 07:35:51

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      【算法】递归、搜索与回溯——简介

      给定一个正整数组成的无序数组arr,给定一个正整数值K,找到arr的所有子数组里,哪个子数组的累加和等于K并且是长度最大的。返回其长度。

      在一个数组中,任何一个前面的数a,和任何一个后面的数b,如果(a,b)是降序的,就称为逆序对。返回逆序对个数。

      文心一言 VS 讯飞星火 VS chatgpt (347)-- 算法导论23.2 6题

      给定一个数字n,代表数组的长度, 给定一个数字m,代表数组每个位置都可以在1~m之间选择数字, 所有长度为n的数组中,最长递增子序列长度为3的数组,叫做达标数组。

      算法复杂度与图算法 - 离散数学系列(十)

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号