爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      算法思想总结:优先级队列

      首页 知识中心 软件开发 文章详情页

      算法思想总结:优先级队列

      2025-01-17 09:05:56 阅读次数:48

      add,left,right,优先级,元素,复杂度

      一、最后一块石头的重量

      . - 力扣(LeetCode)

      算法思想总结:优先级队列

              我们每次都要快速找到前两个最大的石头进行抵消,这个时候用优先级队列(建大堆),不断取堆顶元素是最好的!每次删除堆顶元素后,可以自动调整,时间复杂度是logN。

      class Solution {
      public:
          int lastStoneWeight(vector<int>& stones) 
          {
              //建立优先级队列  大堆
             priority_queue<int> heap;
             for(auto&num:stones) heap.push(num);
             while(heap.size()>1)
             {
              int x=();
              heap.pop();
              int y=();
              heap.pop();
              if(x>y) heap.push(x-y); 
             }
             return heap.size()?():0;//不为空,就返回堆顶元素,为空,就返回0
          }
      };

      二、数据流中的第K大元素

      . - 力扣(LeetCode)

      算法思想总结:优先级队列

      (1)在学习分治专题的时候,我们知道topK问题可以用优先级队列去解决也可以用快速排序的三路划分去解决,并且快速排序反而会更优秀一点,那优先级队列的优势究竟体现在哪里呢??其优势体现在可以不断地去取用堆顶元素或者是加入元素的时候都可以通过用logN的时间复杂度进行调整,而前期建堆也仅仅是N*logN的时间复杂度,而快速排序的三路划分则是一次性的N的时间复杂度,所以长期优先级队列收益高,短期收益快速排序的三路划分收益高。

      class KthLargest {
          priority_queue<int,vector<int>,greater<int>> heap;//仿函数
          int k;   //创建一个大小为k的小根堆 堆顶始终是第k大的元素
          //用快速排序算法可以是O(N)的复杂度,但是如果是要频繁去获取,就很显然得依靠优先级队列
      public:
          KthLargest(int _k, vector<int>& nums) 
          {
              k=_k; 
             for(auto &val:nums) 
             {
              heap.push(val);
             if(heap.size()>k) heap.pop();//入堆的同时进行向上调整
             }
          }
          int add(int val) 
          {
             heap.push(val);
             if(heap.size()>k)heap.pop();//可能我插入的时候堆里啥也没有
             return ();
          }
      };

       三、数据的中位数

      . - 力扣(LeetCode)

      算法思想总结:优先级队列

      策略1:存在数组中用sort去排序  —— add(NlogN)  find(1) 

      策略2:还是存在数组中,利用插入排序的思想,因为插入之间就已经是有序的了,所以新元素插入时的时间复杂度是插入排序的最好情况O(N)   ——add(N)   find(1)

      策略3:优先级队列大小堆维护中位数   add(logN)  find(1)

      设计思路:

      1、建立left为大根堆,right为小根堆

      2、我们的add控制始终保持left的数量要么和right相等,要么比right多一个,为了能够满足在O(1)的复杂度内完成找到中位数的任务,我们希望当left多一个的时候,left堆顶的元素就是中位数,而当left和right相等的时候,中位数就是两个堆的堆顶元素的平均值。

      3、为了达到这个目的,我们在时刻控制left和right的数量的同时,一定要保证left里面的元素是小于等于right里面的元素的,所以add要分两种情况去讨论:

      情况1:当两个堆的元素个数相等的时候

          (1)如果left为空,或者是add的元素比left的堆顶元素小,那么就让该元素直接进left

          (2)如果add的元素比left的堆顶元素大,那么他也有可能会比right的元素大,所以我们必须要将这个元素丢到right中,但是直接丢就会破坏规则,所以我们要先将add的元素丢到right中进行调整,然后再将right的堆顶元素丢到left中去,保持left和right的数量关系。 (注意,这里的先后顺序很重要,我们不能先将right的堆顶元素丢到left中,然后再将add丢到right中进行调整,因为我们只是知道这个数比left的堆顶元素大,但是他是比right的堆顶元素大还是小我们不得而知,必须要通过他自己的向下调整去选出来)

      情况2:当left的元素比right多一个的时候

        (1)如果add的元素比left的堆顶元素大,这个时候无脑进右边就行了。

         (2)如果add的元素比left的堆顶元素小,这个时候我们也得把add的元素丢到left中,然后为了保持数量关系,将调整过后的left的堆顶元素移到right中即可。

      细节处理:

      1、我们在比较的时候始终实用left的元素进行比较,因为左边不为空的时候右边也可能为空,所以我们如果不用left去比较而是用right去比较,那么还需要多考虑一种边界情况。

      2、虽然我们add的都是int类型,但是当两个堆的元素个数相同的时候,我们去取两个堆顶元素取平均值的,而平均值是有可能会出现小数的,所以如果我们还用int的话可能会造成小数点丢失,所以我们在/2的时候变成/2.0,这样结果就会被强转成double;

      class MedianFinder {
      public:
          MedianFinder() {} //默认初始化不管了
          void addNum(int num) {
             //分类讨论 m==n或者m==n+1
             size_t m=left.size(),n=right.size();
             if(m==n) //m==n->m==n+1
             {
                 //如果我比左边的堆顶小,或者是为空,我就进左边
                 if(m==0||num<=()) left.push(num);
                 else //如果我比堆顶大,那我要进右边,然后把右边的移过来
                 {
                   right.push(num);
                   left.push(());
                   right.pop();
                 }
             }
             else // m==n+1 ->m==n
             {
                //如果我比左边的小,直接进右边即可
                if(num <= ()) 
                {
                   left.push(num);
                   right.push(());
                   left.pop(); 
                }
                else //如果我比左边的大 无脑进右边 
                right.push(num);
             }
          }
          
          double findMedian() 
          { //我们的策略是 m==n 返回堆顶平均值  如果m==n+1 返回左边的堆顶
            if(left.size()>right.size()) return ();
            else return (()+())/2.0;
          }
          private:
               priority_queue<int> left;//左边是大根堆
               priority_queue<int,vector<int>,greater<int>> right;///右边是小根堆
      };

      四、 前K个高频词汇

      . - 力扣(LeetCode)

      算法思想总结:优先级队列

      该题是一道非常经典的OJ题,在哈希表章节中介绍了四种解法,运用stl中的不同容器去解决。

      算法思想总结:哈希表-CSDN博客

      class Solution {
      public:
         typedef pair<string,int> PSI;
          struct compare//要注意仿函数要+const修饰,否则可能编译不过
           {
              bool operator()(const PSI&kv1,const PSI&kv2) const
              {
                  if(kv1.second==kv2.second) return kv1.first<kv2.first;
                  return kv1.second>kv2.second;
              }
           };
          vector<string> topKFrequent(vector<string>& words, int k) 
          {
              unordered_map<string,int> countmap;//计数
              for(auto&s:words) ++countmap[s];
              //丢到优先级队列里
              priority_queue<PSI,vector<PSI>,compare> heap;
              for (auto& it : countmap) {
                  heap.push(it);
                  if (heap.size() > k) heap.pop();
              }
              vector<string> ret(k);
             for(int i=k-1;i>=0;--i) 
              {
                  ret[i]=().first;
                  heap.pop();
              }
             return ret;
          }
      };
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.csdn.net/weixin_51142926/article/details/139380857,作者:✿༺小陈在拼命༻✿,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:恕我直言你可能真的不会java第10篇-集合元素归约

      下一篇:laravel 源码分析之表单验证不通过的时候是怎么展示的

      相关文章

      2025-05-19 09:04:14

      复杂度的OJ练习

      复杂度的OJ练习

      2025-05-19 09:04:14
      代码 , 复杂度 , 思路 , 数组 , 算法
      2025-05-16 09:15:24

      Redis Set集合

      Redis Set集合

      2025-05-16 09:15:24
      set , 个数 , 元素 , 示例 , 集合
      2025-05-16 09:15:17

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      BFS解决最短路问题(4)_为高尔夫比赛砍树

      2025-05-16 09:15:17
      BFS , lt , 复杂度 , 算法
      2025-05-16 09:15:10

      BFS解决FloodFill算法(3)_岛屿的最大面积

      BFS解决FloodFill算法(3)_岛屿的最大面积

      2025-05-16 09:15:10
      grid , 复杂度 , 算法
      2025-05-14 10:33:31

      计算机小白的成长历程——数组(1)

      计算机小白的成长历程——数组(1)

      2025-05-14 10:33:31
      strlen , 个数 , 元素 , 内存 , 十六进制 , 地址 , 数组
      2025-05-14 10:33:31

      【数据结构】详细介绍串的简单模式匹配——朴素模式匹配算法

      【数据结构】详细介绍串的简单模式匹配——朴素模式匹配算法

      2025-05-14 10:33:31
      下标 , 元素 , 匹配 , 子串 , 模式匹配 , 算法
      2025-05-14 10:33:16

      30天拿下Rust之向量

      在Rust语言中,向量(Vector)是一种动态数组类型,可以存储相同类型的元素,并且可以在运行时改变大小。向量是Rust标准库中的一部分,位于std::vec模块中。

      2025-05-14 10:33:16
      Rust , 使用 , 元素 , 向量 , 方法 , 索引 , 迭代
      2025-05-14 10:33:16

      C++ 11新特性之tuple

      在C++编程语言的发展历程中,C++ 11标准引入了许多开创性的新特性,极大地提升了开发效率与代码质量。其中,tuple(元组)作为一种强大的容器类型,为处理多个不同类型的值提供了便捷的手段。

      2025-05-14 10:33:16
      std , 元素 , 函数 , 初始化 , 模板 , 类型
      2025-05-14 10:03:13

      数据结构-队列

      队列是仅限在一端进行插入,另一端进行删除的线性表。

      2025-05-14 10:03:13
      元素 , 入队 , 出队 , 链表 , 队列
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5254528

      查看更多

      最新文章

      复杂度的OJ练习

      2025-05-19 09:04:14

      Redis Set集合

      2025-05-16 09:15:24

      【数据结构】详细介绍串的简单模式匹配——朴素模式匹配算法

      2025-05-14 10:33:31

      30天拿下Rust之向量

      2025-05-14 10:33:16

      C++ 11新特性之tuple

      2025-05-14 10:33:16

      数据结构-队列

      2025-05-14 10:03:13

      查看更多

      热门文章

      python学习(6)——列表元素的添加、删除、修改及排序

      2023-05-22 03:00:29

      Lc27_移除元素

      2023-04-28 06:45:00

      Lc面试题1710主要元素

      2023-05-19 05:50:39

      React-React的写法

      2024-07-01 01:31:30

      XML简介

      2023-07-11 08:56:18

      一文读懂css【css3】绝对(absolute)定位和相对(relative)定位 相对定位是相对谁定位的 绝对定位又是根据谁绝对定位的 子绝父相 包含块

      2023-07-11 08:48:47

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      【C++容器】数组和vector、array三者区别和联系

      Python算法学习[8]—经典数据结构问题&具体实现

      给你一个由 n 个正整数组成的数组 nums 你可以对数组的任意元素执行任意次数的两类操作

      JavaSE: 七大经典排序算法——冒泡排序

      数组的API中可以return的有哪些

      Java数据结构之《链式线性表的插入与删除》(难度系数65)

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号