爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      【Java异步编程】基于任务类型创建不同的线程池

      首页 知识中心 软件开发 文章详情页

      【Java异步编程】基于任务类型创建不同的线程池

      2025-03-06 09:20:43 阅读次数:10

      CPU,IO,任务,线程

      使用线程池的好处主要有以下三点:

      1. 降低资源消耗:线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,通过重复利用已创建的线程可以降低线程创建和销毁造成的消耗。
      2. 提高响应速度:当任务到达时,可以不需要等待线程创建就能立即执行。
      3. 提高线程的可管理性:线程池提供了一种限制、管理资源的策略,维护一些基本的线程统计信息,如已完成任务的数量等。通过线程池可以对线程资源进行统一的分配、监控和调优。

      虽然使用线程池的好处很多,但是如果其线程数配置得不合理,不仅可能达不到预期效果,反而可能降低应用的性能。接下来按照不同的任务类型来配置线程池。

      一. 按照任务类型对线程池进行分类

      使用标准构造器ThreadPoolExecutor创建线程池时,会涉及线程数的配置,而线程数的配置与异步任务类型是分不开的。这里将线程池的异步任务大致分为以下三类:

      1. IO密集型任务此类任务主要是执行IO操作。由于执行IO操作的时间较长,导致CPU的利用率不高,这类任务CPU常处于空闲状态。Netty的IO读写操作为此类任务的典型例子。
      2. CPU密集型任务此类任务主要是执行计算任务。由于响应时间很快,CPU一直在运行,这种任务CPU的利用率很高。
      3. 混合型任务此类任务既要执行逻辑计算,又要进行IO操作(如RPC调用、数据库访问)​。

      相对来说,由于执行IO操作的耗时较长(一次网络往返往往在数百毫秒级别)​,这类任务的CPU利用率也不是太高。Web服务器的HTTP请求处理操作为此类任务的典型例子。一般情况下,针对以上不同类型的异步任务需要创建不同类型的线程池,并进行针对性的参数配置。

      1. IO密集型任务的线程数

      由于IO密集型任务的CPU使用率较低,导致线程空余时间很多,因此通常需要开CPU核心数两倍的线程。当IO线程空闲时,可以启用其他线程继续使用CPU,以提高CPU的使用率。

      @Slf4j  
      //懒汉式单例创建线程池:用于IO密集型任务  
      public class IoIntenseTargetThreadPoolLazyHolder {  
        
          /**  
           * IO线程池最大线程数  
           */  
          public static final int IO_MAX = Math.max(2, CPU_COUNT * 2);  
        
        
          /**  
           * 空闲保活时限,单位秒  
           */  
          public static final int KEEP_ALIVE_SECONDS = 30;  
        
        
          /**  
           * 有界队列size  
           */    
          public static final int QUEUE_SIZE = 10000;  
        
            
            
          //线程池: 用于IO密集型任务  
          public static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(  
                  IO_MAX,  
                  IO_MAX,  
                  KEEP_ALIVE_SECONDS,  
                  TimeUnit.SECONDS,  
                  new LinkedBlockingQueue(QUEUE_SIZE),  
                  new ThreadUtil.CustomThreadFactory("io"));  
        
          public static ThreadPoolExecutor getInnerExecutor() {  
              return EXECUTOR;  
          }  
        
          static {  
              log.info("线程池已经初始化");  
        
              EXECUTOR.allowCoreThreadTimeOut(true);  
              //JVM关闭时的钩子函数  
              Runtime.getRuntime().addShutdownHook(  
                      new ShutdownHookThread("IO密集型任务线程池", new Callable<Void>() {  
                          @Override  
                          public Void call() throws Exception {  
                              //优雅关闭线程池  
                              shutdownThreadPoolGracefully(EXECUTOR);  
                              return null;  
                          }  
                      }));  
          }  
      }
      

      有以下几点需要注意

      1. 调用allowCoreThreadTimeOut,传入了参数true,应用于核心线程,当池中的线程长时间空闲时,可以自行销毁。
      2. 使用有界队列缓冲任务而不是无界队列,如果128太小,可以根据具体需要进行增大,但是不能使用无界队列。
      3. corePoolSize和maximumPoolSize保持一致,使得在接收到新任务时,如果没有空闲工作线程,就优先创建新的线程去执行新任务,而不是优先加入阻塞队列,等待现有工作线程空闲后再执行。
      4. 使用JVM关闭时的钩子函数优雅地自动关闭线程池。

      2. CPU密集型任务的线程数

      CPU密集型任务也叫计算密集型任务,其特点是要进行大量计算而需要消耗CPU资源,比如计算圆周率、对视频进行高清解码等。

      CPU密集型任务虽然也可以并行完成,但是并行的任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以要最高效地利用CPU,CPU密集型任务并行执行的数量应当等于CPU的核心数。

      /**  
       * CPU核数  
       **/  
      public static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();  
        
      public static final int MAXIMUM_POOL_SIZE = CPU_COUNT;  
        
      //线程池: 用于CPU密集型任务  
      private static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(  
              MAXIMUM_POOL_SIZE,  
              MAXIMUM_POOL_SIZE,  
              KEEP_ALIVE_SECONDS,  
              TimeUnit.SECONDS,  
              new LinkedBlockingQueue(QUEUE_SIZE),  
              new CustomThreadFactory("cpu"));  
        
        
      public static ThreadPoolExecutor getInnerExecutor() {  
          return EXECUTOR;  
      }  
        
      static {  
          log.info("线程池已经初始化");  
        
          EXECUTOR.allowCoreThreadTimeOut(true);  
          //JVM关闭时的钩子函数  
          Runtime.getRuntime().addShutdownHook(  
                  new ShutdownHookThread("CPU密集型任务线程池", new Callable<Void>() {  
                      @Override  
                      public Void call() throws Exception {  
                          //优雅关闭线程池  
                          shutdownThreadPoolGracefully(EXECUTOR);  
                          return null;  
                      }  
                  }));  
      }
      

      3. 混合型任务的线程数

      混合型任务既要执行逻辑计算,又要进行大量非CPU耗时操作(如RPC调用、数据库访问、网络通信等)​,所以混合型任务CPU的利用率不是太高,非CPU耗时往往是CPU耗时的数倍。

      比如在Web应用中处理HTTP请求时,一次请求处理会包括DB操作、RPC操作、缓存操作等多种耗时操作。一般来说,一次Web请求的CPU计算耗时往往较少,大致在100~500毫秒,而其他耗时操作会占用500~1000毫秒,甚至更多的时间。

      在为混合型任务创建线程池时,如何确定线程数呢?业界有一个比较成熟的估算公式,具体如下:

      
      最佳线程数 = ((线程等待时间+线程CPU时间) / 线程CPU时间) * CPU核数
      
      

      通过公式可以看出:等待时间所占的比例越高,需要的线程就越多;CPU耗时所占的比例越高,需要的线程就越少。

      下面举一个例子:

      比如在Web服务器处理HTTP请求时,假设平均线程CPU运行时间为100毫秒,而线程等待时间(比如包括DB操作、RPC操作、缓存操作等)为900毫秒,如果CPU核数为8,那么根据上面这个公式,估算如下:

      (900毫秒 + 100毫秒) / 100毫秒 * 8 = 10 * 8 = 80
      

      二. 线程数越多越好吗

      很多小伙伴认为,线程数越高越好。那么,使用很多线程是否就一定比单线程高效呢?答案是否定的。

      虽然多线程在一些并发场景下能带来性能提升,但过多的线程并不意味着性能必定提升。线程数过高可能导致一些问题:

      • 上下文切换(Context Switching): 每个线程的执行都由操作系统调度,线程切换会带来额外的开销。当线程数过多时,操作系统频繁地在不同线程间切换,导致 上下文切换 成本增加,这样反而可能降低系统的整体效率。

      • 资源争用: 多线程同时访问共享资源时,可能会遇到 资源竞争 和 锁竞争,特别是在 CPU 绑定的任务中。线程之间的协作和同步会称为性能瓶颈。

      • 内存开销: 每个线程需要占用一定的内存,维护线程栈、调度信息等,过多的线程会消耗大量的内存和系统资源,这可能会导致系统性能下降,甚至造成内存溢出。

      三. Redis 单线程的高效性

      Redis 是一个 单线程 的高性能数据库,许多人可能会觉得它的设计不合常理,为什么不使用多线程来提升性能呢?然而,Redis 使用单线程反而能够达到极高的吞吐量,这是因为:

      特点 核心内容
      1. 避免多线程上下文切换 单线程模型避免了线程切换的开销,任务按顺序处理,简化了并发控制,避免了锁竞争和死锁问题。
      2. 非阻塞设计 采用事件驱动和 I/O 多路复用技术,非阻塞处理请求。如果一个请求需要等待外部资源(如网络 I/O),Redis 会把控制权交给其他请求,而不是阻塞线程。这种方式避免了多线程中因为等待 I/O 资源导致的线程空闲,充分利用了 CPU 的时间片。
      3. CPU vs I/O 密集型 Redis 的大多数操作(如 GET/SET)是 I/O 密集型 的,单线程在 I/O 密集型应用中有优势。
      4. 数据访问模式 Redis 操作主要是内存访问,内存操作速度快,单线程执行时没有同步问题,数据结构(如哈希表、跳表等)高效。
      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.csdn.net/hiliang521/article/details/145408382,作者:roman_日积跬步-终至千里,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:【Flink网络数据传输(4)】RecordWriter(下)封装数据并发送到网络的过程

      下一篇:C 语分支初启航,循环开篇韵悠长--if,else语句

      相关文章

      2025-05-19 09:04:38

      mysql只有在任务处于完成状态才能运行

      mysql只有在任务处于完成状态才能运行

      2025-05-19 09:04:38
      MySQL , 任务 , 数据库 , 查询 , 状态
      2025-05-16 09:15:17

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17
      单例 , 线程 , 队列
      2025-05-14 10:07:38

      超级好用的C++实用库之互斥锁

      互斥锁是一种用于多线程编程的同步机制,其主要目的是确保在并发执行环境中,同一时间内只有一个线程能够访问和修改共享资源。

      2025-05-14 10:07:38
      CHP , Lock , 互斥 , 线程 , 释放 , 锁定
      2025-05-14 10:03:13

      超级好用的C++实用库之线程基类

      在C++中,线程是操作系统能够进行运算调度的最小单位。一个进程可以包含多个线程,这些线程共享进程的资源,比如:内存空间和系统资源,但它们有自己的指令指针、堆栈和局部变量等。

      2025-05-14 10:03:13
      Linux , void , Windows , 函数 , 操作系统 , 线程
      2025-05-14 10:03:13

      AJAX-事件循环(超详细过程)

      JS有一个基于事件循环的并发模型,事件循环负责执行代码、收集和处理事件以及执行队列中的子任务。

      2025-05-14 10:03:13
      代码 , 任务 , 出栈 , 异步 , 执行 , 调用 , 队列
      2025-05-14 10:02:58

      Linux top 命令使用教程

      Linux top 是一个在Linux和其他类Unix 系统上常用的实时系统监控工具。它提供了一个动态的、交互式的实时视图,显示系统的整体性能信息以及正在运行的进程的相关信息。

      2025-05-14 10:02:58
      CPU , 信息 , 内存 , 占用 , 备注 , 进程
      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      在高并发系统中,Redis 缓存是一种常见的性能优化方式。然而,缓存击穿问题也伴随着高并发访问而来。

      2025-05-14 10:02:48
      Redis , 互斥 , 数据库 , 线程 , 缓存 , 请求
      2025-05-14 10:02:48

      YARN与HBase任务

      YARN与HBase任务

      2025-05-14 10:02:48
      HBase , 任务 , 应用程序 , 资源 , 集群
      2025-05-14 09:51:15

      java怎么对线程池做监控

      对Java线程池进行监控是确保系统性能和稳定性的重要部分。监控线程池可以帮助我们了解线程池的状态,如当前活跃线程数、任务队列长度、已完成任务数等。

      2025-05-14 09:51:15
      Java , 方法 , 监控 , 示例 , 线程 , 队列
      2025-05-13 09:53:23

      java检测当前CPU负载状态

      在Java中,直接检测CPU负载状态并不像在操作系统命令行中那样简单,因为Java标准库并没有直接提供这样的功能。

      2025-05-13 09:53:23
      CPU , 使用 , 命令 , 示例 , 获取 , 负载
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5247469

      查看更多

      最新文章

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17

      超级好用的C++实用库之互斥锁

      2025-05-14 10:07:38

      超级好用的C++实用库之线程基类

      2025-05-14 10:03:13

      AJAX-事件循环(超详细过程)

      2025-05-14 10:03:13

      YARN与HBase任务

      2025-05-14 10:02:48

      互斥锁解决redis缓存击穿

      2025-05-14 10:02:48

      查看更多

      热门文章

      Java线程同步synchronized wait notifyAll

      2023-04-18 14:15:05

      Android Priority Job Queue (Job Manager):线程任务的容错重启机制(二)

      2024-09-25 10:13:46

      操作系统中的线程种类

      2023-04-24 11:27:18

      Android Priority Job Queue (Job Manager):多重不同Job并发执行并在前台获得返回结果(四)

      2023-04-13 09:54:33

      实现远程线程DLL注入

      2023-05-04 08:57:15

      【Java并发编程】之十:使用wait/notify/notifyAll实现线程间通信的几点重要说明

      2023-04-24 11:25:19

      查看更多

      热门标签

      java Java python 编程开发 代码 开发语言 算法 线程 Python html 数组 C++ 元素 javascript c++
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      JVM系列(一)内存区域分布

      【揭秘】ExecutorService和ScheduledExecutorService区别?

      JMeter参数化(6)

      java并发编程JUC第十篇:CyclicBarrier线程同步

      【多线程】c++11多线程编程(一)——初识

      【C++11】std::async 学习 --- 学习中

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号