原题:数字三角形(递推、简单DP)
原题链接:[USACO1.5][IOI1994]数字三角形 Number Triangles - 洛谷
题目描述:
输入格式:
第一个行一个正整数 n ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
输出格式:
单独的一行,包含那个可能得到的最大的和。
数据范围:
1 ≤ n ≤ 1000,三角形数字值在 [0,100] 范围内。
示例:
输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
30
思路:
本题采用倒推的方式:
假设func[i][j]表示的是从 i, j 到最后一层的最大路径之和
当从顶层沿某条路径走到第i层向第i+1层前进时,我们的选择是沿其下两条可行路径中最大数字的方向前进,所以找出递推关系:func[i][j] += max(func[i+1][j],func[i+1][j+1]);
注意:func[i][j]表示当前数字的值,func[i+1][j]和func[i+1][j+1]分别表示从i+1,j、i+1,j+1到最后一层的最大路径之和;
最终func[0][0]就是所求
代码执行:
#include<stdio.h>
#include<algorithm>
using namespace std;
int func[1005][1005] = {0};
int main()
{
int n = 0;
scanf("%d", &n);
int i = 0;
int j = 0;
for(i = 0; i < n; i++)
{
for(j = 0; j <= i; j++)
{
scanf("%d", &func[i][j]);
}
}
//假设func[i][j]表示的是从i, j到最后一层的最大路径之和
//找出递推关系:func[i][j]+=max(func[i+1][j],func[i+1][j+1]);
//func[i][j]表示当前数字的值,func[i+1][j]和func[i+1][j+1]分别表示从i+1,j、i+1,j+1到最后一层的最大路径之和
//最终func[0][0]就是所求
for(i = n - 2; i >= 0; i--)
{
for(j = 0; j <= i; j++)
{
func[i][j] += max(func[i+1][j], func[i+1][j+1]);
}
}
printf("%d\n", func[0][0]);
return 0;