爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      2025-01-16 09:30:08 阅读次数:15

      序列,排序,比较

      四、用go语言,假设现有一个包含n个元素的待排序序列。该序列由 n/k 个子序列组成,每个子序列包含k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。因此,对于这个长度为 n 的序列的排序转化为对 n/k个序列中的k个元素的排序。试证明: 这个排序问题中所需比较次数的下界是 Ω(nlgk).(提示:简单地将每个子序列的下界进行合并是不严谨的。)

      文心一言:

      首先,让我们明确一下问题的描述。我们有一个长度为 n 的序列,这个序列被分为 n/k 个子序列,每个子序列包含 k 个元素。每个子序列中的元素都满足题目的条件:小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。我们的目标是证明对这个序列进行排序所需的最少比较次数是 Ω(nlgk)。

      为了证明这个下界,我们可以使用一个被称为“分治排序”的策略,结合“堆排序”算法来进行分析。具体来说,我们将原始序列视为“堆的层次结构”,每个子序列视为一个节点,每个节点的子节点是其相邻的子序列。

      现在,让我们定义 T(n) 为对长度为 n 的序列进行排序所需的最少比较次数。我们可以使用递归的方法来分析这个问题。

      对于长度为 1 的序列,T(1) = 0,因为只有一个元素,无需进行比较。 对于长度大于 1 的序列,我们可以将其分为 n/k 个长度为 k 的子序列。然后,我们可以对每个子序列进行排序,这需要 T(k) 次比较。接着,我们需要将排序后的子序列重新合并为排序后的序列。这需要另外 (n/k) - 1 次比较。因此,我们有 T(n) = T(k) + (n/k) - 1。 现在,我们可以利用上述递归公式来推导出 T(n) 的下界。假设 k 是大于 1 的常数,那么我们可以得到:

      T(n) >= T(k) + (n/k) - 1

      由于 k 是常数,T(k) 可以被视为常数。因此,我们有:

      T(n) >= (n/k) - 1

      将上式两边同时乘以 k,我们可以得到:

      kT(n) >= n - k

      将上式两边同时除以 n,我们可以得到:

      T(n) >= (n/k) - (k/n)

      由于 k 是大于 1 的常数,我们可以得出结论:T(n) 是 Ω(nlgk)。

      这样,我们就完成了对这个排序问题的下界证明。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      讯飞星火:

      首先,我们需要了解这个问题的背景。这是一个典型的排序问题,可以使用归并排序算法来解决。归并排序是一种分治算法,它将待排序序列分成两半,然后对每一半进行排序,最后将两个已排序的子序列合并成一个有序序列。

      我们可以通过以下步骤来证明所需比较次数的下界是 Ω(nlgk):

      1.首先,我们需要确定归并排序算法的时间复杂度。归并排序的时间复杂度为 O(nlogn),其中 n 是待排序序列的长度。这是因为每次归并操作都需要比较 n/2 个元素,而总共需要进行 logn 次归并操作。

      2.然后,我们需要计算每个子序列的下界。由于每个子序列中的元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素,因此每个子序列的下界可以看作是一个递增序列。我们可以使用线性时间复杂度的算法来计算每个子序列的下界,即 O(k)。

      3.接下来,我们需要计算合并操作的次数。由于每次合并操作都需要比较 n/2 个元素,因此总共需要进行 (n/k) * k / 2 = nlgk / 2 次合并操作。

      4.最后,我们将归并排序算法的时间复杂度和合并操作的次数相加,得到所需比较次数的下界为 O(nlogn + nlgk / 2)。由于 nlogn 和 nlgk / 2 都是关于 n 的多项式函数,我们可以将它们合并为一个多项式函数,即 O(nlogn + nlgk)。但是,由于 nlgk 是一个非负数,我们可以将其视为常数项,因此所需比较次数的下界为 O(nlogn)。

      综上所述,这个排序问题中所需比较次数的下界是 Ω(nlgk)。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      360智脑:

      首先,我们需要找到每个子序列的最小值和最大值。

      对于每一个子序列,我们比较其元素与当前最小值和最大值的大小关系,更新最小值和最大值。这个过程可以使用一个双指针来实现,时间复杂度为 O(k)。

      接下来,我们需要找到所有子序列的中位数。

      对于一个长度为 k 的序列,中位数是第 k/2 个元素。因此,我们需要遍历所有子序列,找到它们的中位数。时间复杂度为 O(n)。

      最后,我们需要找到所有子序列中的最小值并返回。

      对于一个长度为 n 的序列,最小值可以通过比较每个子序列的第一个元素得到。因此,时间复杂度为 O(n)。

      将所有过程的时间复杂度相加,我们得到 O(n*k)/3 + O(n) = Ω(nlgk).

      因此,这个排序问题中所需比较次数的下界是 Ω(nlgk).

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      chatglm:

      为了证明这个排序问题中所需比较次数的下界是 Ω(nlgk),我们可以使用归纳法。首先,我们考虑一个长度为 k 的子序列的排序问题。在这种情况下,我们需要比较的下界是 O(klogk)。这是因为在任何排序算法中,对于长度为 k 的子序列,我们需要至少比较 k 次。

      现在,我们考虑长度为 n 的序列。根据题目描述,我们将其分为 n/k 个子序列,每个子序列包含 k 个元素。为了排序整个序列,我们可以先对这些子序列进行排序,然后对每个子序列进行排序。

      对于每个子序列的排序,我们需要比较的下界是 O(klogk)。由于我们有 n/k 个子序列,因此总共需要的比较下界是 n/k * O(klogk) = O(nlogk)。

      然而,我们需要证明的是排序问题中所需比较次数的下界是 Ω(nlgk)。为了证明这一点,我们需要考虑最坏情况。假设我们的 n/k 个子序列中的元素分别是 a1, a2,..., a1, a2,..., a1(其中 ai 表示子序列中的第 i 个元素)。这样,当我们对子序列进行排序时,每个子序列中的元素已经是有序的,因此不需要进行任何比较。

      然而,当我们对整个序列进行排序时,我们需要比较每个元素与它后面的元素。在最坏情况下,每个元素都需要与 n-1 个其他元素进行比较。因此,总共需要的比较次数是 n * (n-1)/2 = n(n-1)/2。

      我们可以将这个比较次数与 O(nlogk) 进行比较。根据大 O 记法,我们可以将 O(nlogk) 表示为 O(nlgk),因为 n 和 logk 都是关于 n 的单调递增函数。因此,我们有:

      n(n-1)/2 ≥ Ω(nlgk)

      这意味着,在排序问题中,所需比较次数的下界是 Ω(nlgk)。我们证明了这个结论,因此得证。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      通义千问:

      我们可以使用归并排序的思想来证明这个问题的下界。归并排序的基本思路是将一个序列不断地拆分成子序列,直到每个子序列只包含一个元素,然后将这些子序列逐步合并起来,直到得到最终的有序序列。在合并的过程中,我们需要比较两个子序列中的元素,从而产生比较次数。

      对于这个问题,我们可以将每个子序列看作是一个长度为k的序列,将这n/k个子序列看作是n/k个长度为k的序列。我们将这n/k个子序列进行归并排序,得到一个长度为n的有序序列。在归并的过程中,我们需要比较每对子序列中的元素,即每个子序列需要和其它(n/k-1)个子序列进行比较。因此,总的比较次数为n/k * (n/k-1),即n^2 / (2k^2)。

      为了证明这个下界是Ω(nlgk),我们需要找到一个函数f(n,k),使得对于任意的n和k,f(n,k) * lgk >= n^2 / (2k^2)。我们可以选择f(n,k) = n * lgk,这样满足f(n,k) * lgk >= n^2 / (2k^2)。

      因此,对于任意的n和k,我们可以选择排序算法为归并排序,比较次数为n * lgk,使得对于给定的子序列,其排序问题的下界是Ω(nlgk)。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      天工:

      以下是使用Go语言的证明:

      package main
      
      import "fmt"
      
      func main() {
          n := 100
          k := 5
          sequence := make([]int, n)
          for i := 0; i < n; i++ {
              sequence[i]  = i
          }
      
          // 计算每个子序列的下界
          subsequences := make([][]int, k)
          for i := 0; i < k; i++ {
              subsequences[i] = 
              make([]int, n/k)
              for j := range subsequences[i] {
                  subsequences[i][j] = sequence[i*(n/k)+j]
              }
          }
      
          // 合并每个子序列的下界
          merged := make([]int, 0,n)
          for _, subseq := range subsequences {
              for _, num := range subseq {
                  merged = append(merged, num)
              }
          }
      
          // 对合并后的序列进行排序
          sort.Ints(merged)
      
          fmt.Println(merged)
      }

      这个程序首先生成一个长度为n的序列。然后,它计算出每个子序列的下界,并将它们合并成一个新的序列。最后,它对合并后的序列进行排序。

      我们可以证明,这个排序问题中所需比较次数的下界是Ω(nlgk)。

      首先,我们需要计算每个子序列的下界所需的比较次数。对于每个子序列,我们需要比较它的前k个元素和它后面的k个元素。因此,我们需要进行k * (n/k)次比较。

      接下来,我们需要将每个子序列合并成一个新的序列。对于每个子序列,我们需要进行n/k次比较。因此,我们需要进行k * (n/k) * n/k次比较。

      因此,总共需要进行的比较次数为:

      Ω(n/k) * k * (n/k) * n/k

      化简可得:

      Ω(nlgk)

      因此,我们证明了这个排序问题中所需比较次数的下界是Ω(nlgk)。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      chatgpt:

      要证明在这个排序问题中所需的比较次数下界是 Ω(nlgk),我们可以使用决策树模型来进行证明。

      假设我们有一个决策树来解决这个排序问题,其中每个叶节点代表一个可能的排序结果,而每个非叶节点代表一次比较操作。考虑到输入序列的所有可能排列,决策树的叶节点数量将不少于 n!(n的阶乘)。这是因为它必须覆盖所有可能的排序结果。

      现在,我们来计算决策树的高度,即从根节点到最长路径的比较次数。每个非叶节点都会进行一次比较操作,因此决策树的高度就是所需的比较次数。

      根据题目给出的子序列属性,每个子序列内部是有序的,但在子序列之间并没有提供任何有关元素顺序的信息。因此,决策树的高度取决于如何将这些子序列排序。

      在最坏的情况下,我们需要在各个子序列之间进行一次比较。假设有 k 个子序列,那么在最终排序过程中,我们必须对这 k 个子序列进行一次完全比较。换句话说,每个子序列的元素都需要与其他 k-1 个子序列的元素进行比较。

      由于每个子序列有 k 个元素,这一过程将进行 k*(k-1) 次比较。因为我们有 n/k 个子序列,所以总共的比较次数是 (n/k) * k * (k-1) = n * (k-1)。

      我们可以得出以下结论:

      • 决策树的高度至少为 n * (k-1)。
      • 在决策树模型中,决策树的高度是所需比较次数的下界。

      而我们知道,决策树的高度不会低于树的最优高度,即 Ω(nlgk)。

      因此,在这个排序问题中,所需的比较次数的下界是 Ω(nlgk)。这个证明表明,即使对 k 个元素的每个子序列进行最优排序,我们也无法避免要进行 Ω(nlgk) 次比较,以获得最终的排序结果。

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      总结

      文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/7276619,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (75)-- 算法导论7.2 4题

      下一篇:算法思想总结:哈希表

      相关文章

      2025-05-14 10:03:05

      C++ 11新特性之语法甜点1

      C++ 11新特性之语法甜点1

      2025-05-14 10:03:05
      函数 , 初始化 , 序列 , 引入 , 构造函数 , 语法
      2025-05-14 10:02:48

      SQL Server 执行计划3--关联查询

      在 SQL Server 中,Nested Loops(嵌套循环)是一种常用的连接算法,适用于小数据集或索引支持的场景。Nested Loops 的执行逻辑比较简单且直接,但在处理大规模数据时可能效率较低。

      2025-05-14 10:02:48
      哈希 , 排序 , 记录 , 输入 , 连接
      2025-05-14 10:02:48

      SQL Server 执行计划2--函数计算

      排序操作资源消耗较高的操作,sort操作是占用内存的操作,当内存不足时会占用tempdb。

      2025-05-14 10:02:48
      分组 , 哈希 , 排序 , 聚合
      2025-05-14 09:51:21

      Transformer模型:Position Embedding实现

      在自然语言处理(NLP)中,Transformer 模型是一个非常重要的里程碑,它通过自注意力(self-attention)机制极大地提高了处理序列数据的能力。

      2025-05-14 09:51:21
      位置 , 序列 , 模型
      2025-05-14 09:51:21

      mysql数据库中decimal数据类型比较大小

      在MySQL中,DECIMAL数据类型用于存储精确的数值,它非常适合用于需要高精度计算的场景,如金融应用。当我们需要在MySQL数据库中比较DECIMAL类型数据的大小时,可以使用标准的比较运算符,如>, <, >=, <=, = 和 <>(或!=)。

      2025-05-14 09:51:21
      MySQL , SQL , 数据类型 , 查询 , 比较 , 示例
      2025-05-14 09:51:15

      mysql 语句如何优化

      MySQL语句的优化是一个复杂但重要的过程,因为它可以显著提高数据库的性能。

      2025-05-14 09:51:15
      JOIN , MySQL , 优化 , 使用 , 排序 , 查询 , 索引
      2025-05-12 09:10:07

      最长递增子序列

      给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

      2025-05-12 09:10:07
      lt , nums , 序列 , 数组 , 示例
      2025-05-12 08:45:17

      格雷编码

      格雷编码

      2025-05-12 08:45:17
      lt , 序列 , 整数 , 示例
      2025-05-09 09:30:19

      排序链表

      给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 

      2025-05-09 09:30:19
      lt , 排序 , 示例 , 链表
      2025-05-09 08:50:35

      Java基础(Arrays工具类)(asList()方法)(详细)

      实际的开发中,经常需要按某些特定条件对容器或者数组进行查找、替换、排序、反转甚至是打乱等操作。直接编写代码实现可以,但是会增加工作量,且性能不能得到保证。

      2025-05-09 08:50:35
      Arrays , int , 列表 , 排序 , 数组 , 方法
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5243874

      查看更多

      最新文章

      【 数据建模与预测】数据建模的基本方法与预测技术

      2025-05-06 09:18:38

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      文心一言 VS 讯飞星火 VS chatgpt (342)-- 算法导论23.2 1题

      2025-04-15 09:25:57

      文心一言 VS 讯飞星火 VS chatgpt (323)-- 算法导论22.4 4题

      2025-04-15 09:24:56

      归并排序算法

      2025-04-09 09:14:24

      列表的插入排序算法

      2025-04-09 09:14:12

      查看更多

      热门文章

      【Tableau Desktop 企业日常问题25】Tableau 如何实现自定义控件排序?

      2023-06-12 09:26:26

      堆排序

      2023-07-28 07:35:51

      DFA算法实现关键字查找(正则原理入门)

      2023-07-28 07:29:30

      小明手中有n块积木,并且小明知道每块积木的重量。现在小明希望将这些积木堆起来, 要求是任意一块积木如果想堆在另一块积木上面

      2024-05-21 07:14:00

      解析排序算法:十大排序方法的工作原理与性能比较

      2024-06-03 09:56:44

      排序算法(5/6 改)

      2024-10-30 09:01:26

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      文心一言 VS 讯飞星火 VS chatgpt (22)-- 算法导论4.2 2题

      【python】排序算法的稳定性&冒泡排序

      DFA算法实现关键字查找(正则原理入门)

      一文详解“分治—归并“在算法中的应用

      【Tableau Desktop 企业日常问题25】Tableau 如何实现自定义控件排序?

      文心一言 VS 讯飞星火 VS chatgpt (203)-- 算法导论15.3 2题

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号