扩散模型(Diffusion Models)作为生成式人工智能领域的里程碑式技术,凭借其强大的生成能力和理论可解释性,在图像生成、语音合成、分子设计等任务中展现出显著优势。然而,其核心的采样过程——通过逐步去噪从噪声分布中恢复目标数据——存在计算成本高、耗时长的问题。例如,经典的DDPM(Denoising Diffusion Probabilistic Models)需要数百甚至上千步迭代才能生成高质量样本,这严重限制了其在大规模实时应用中的部署。为解决这一瓶颈,学术界提出了多种加速策略,其中基于常微分方程(ODE)求解器的确定性采样方法与步数自适应机制的结合,成为当前最具潜力的研究方向之一。本文将从理论原理、方法创新、性能优化三个维度,系统阐述这一技术路径的内在逻辑与实践价值。