爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      算法导论22.2 2题

      首页 知识中心 大数据 文章详情页

      算法导论22.2 2题

      2025-01-06 08:44:35 阅读次数:16

      结点,节点,访问,队列

      二、请计算出在图22-3所示无向图上运行广度优先搜索算法后的 d 值和 π 值。这里假定结点 u 为算法所用的源结点。

      文心一言:

      为了计算在图22-3所示的无向图上运行广度优先搜索(BFS)算法后的d值和π值,我们首先需要明确图的结构和源结点u。由于题目没有直接给出图的具体结构和源结点u的确切位置,我将假设一个可能的图结构和源结点u,并基于这个假设进行解答。

      假设图22-3如下所示(这里我自行构造一个示例图,因为原图未给出):

      / \ v w / \ / \ x y z t u是源结点,其他结点分别是v, w, x, y, z, t`。

      广度优先搜索(BFS)过程

      1. 初始化:
      • d[u] = 0(源结点到自己的距离是0)
      • π[u] = null(源结点没有前驱)
      • 将u加入队列
      1. 从队列中取出结点并处理其邻接点:
      • 取出u,处理u的邻接点v和w:
      • d[v] = 1,π[v] = u
      • d[w] = 1,π[w] = u
      • 将v和w加入队列
      1. 继续处理队列中的结点:
      • 取出v,处理v的邻接点x和y(假设v与x, y相连):
      • d[x] = 2(如果x之前未被访问),π[x] = v
      • d[y] = 2(如果y之前未被访问),π[y] = v
      • 将x和y(如果它们之前不在队列中)加入队列
      • 取出w,处理w的邻接点z和t(假设w与z, t相连):
      • d[z] = 2(如果z之前未被访问),π[z] = w
      • d[t] = 2(如果t之前未被访问),π[t] = w
      • 将z和t(如果它们之前不在队列中)加入队列
      1. 继续此过程,直到队列为空。但在这个例子中,所有结点都已被处理。

      结果

      基于上述假设的图结构和BFS过程,我们得到:

      • d值:d[u] = 0, d[v] = 1, d[w] = 1, d[x] = 2, d[y] = 2, d[z] = 2, d[t] = 2
      • π值:π[u] = null, π[v] = u, π[w] = u, π[x] = v, π[y] = v, π[z] = w, π[t] = w

      请注意,这些值是基于我假设的图结构和源结点u的位置得出的。如果实际的图结构或源结点位置不同,结果也会有所不同。

      算法导论22.2 2题

      算法导论22.2 2题

      讯飞星火:

      由于题目中没有提供图22-3的具体信息,无法直接计算d值和π值。但是,我可以解释如何计算这些值。

      在广度优先搜索(BFS)算法中:

      • d(u,v) 表示从源结点 u 到任意结点 v 的最短路径的长度。
      • π(v) 表示从源结点 u 到任意结点 v 的最短路径上 v 的前驱结点。

      为了计算这些值,我们需要执行以下步骤:

      1. 将源结点 u 标记为已访问,并将其 d 值设为0,因为从 u 到自身的距离是0。
      2. 创建一个队列,并将源结点 u 加入队列。
      3. 当队列不为空时,执行以下操作:
      • 从队列中移除一个结点 x。
      • 对于每个与 x 相邻且未被访问过的结点 y,执行以下操作:
      • 将 y 标记为已访问。
      • 将 y 的 d 值设为 x 的 d 值加1,即 d(x) + 1。
      • 将 y 的前驱结点 π(y) 设为 x。
      • 将 y 加入队列。
      1. 重复步骤3,直到队列为空。

      最终,所有结点的 d 值和 π 值都将被计算出来。

      由于缺少具体的图信息,无法给出具体的数值答案。如果提供了图的具体结构,我们可以使用上述步骤来计算每个结点的 d 值和 π 值。

      360智脑:

      为了计算无向图上运行广度优先搜索(BFS)算法后的 d 值和 π 值,我们需要知道图的具体结构。然而,你没有提供图 22-3 的具体信息。因此,我无法直接计算 d 值和 π 值。

      通常,在 BFS 算法中,d 值表示从源结点到某个结点的最短路径长度,而 π 值表示某个结点的前驱结点。如果你能提供图的具体结构或者邻接矩阵,我可以帮助你计算这些值。

      假设我们有一个简单的无向图,如下所示:

      A -- B
      |    |
      C -- D

      如果我们以 A 为源结点运行 BFS,我们可以得到以下结果:

      • d(A) = 0
      • d(B) = 1
      • d(C) = 1
      • d(D) = 2

      π 值表示每个结点的前驱结点:

      • π(B) = A
      • π(C) = A
      • π(D) = B 或 C(取决于你先访问哪个结点)

      如果你能提供具体的图结构,我可以更准确地帮助你计算 d 值和 π 值。

      智谱清言:

      抱歉,您提到的 "图22-3" 和具体的图形描述没有在这里提供,所以我无法直接计算广度优先搜索(BFS)算法的结果。为了计算 d 值(从源结点 u 到其他各结点的最短路径长度)和 π 值(源结点 u 到其他各结点的最短路径前驱结点),我需要知道图的具体表示,比如节点和边的列表。 如果您能提供图22-3的详细信息,或者描述该图的节点和边的具体情况,我将能够帮助您计算 d 值和 π 值。通常这些值是通过以下步骤计算得到的:

      1. 选择源结点 u 并将其 d 值设置为 0,表示源结点到自身的距离为 0。
      2. 将结点 u 放入队列中。
      3. 当队列非空时,进行以下操作: a. 从队列中移除一个结点 v(这个结点是从源结点 u 开始访问的下一个结点)。 b. 对于结点 v 的每一条边 e: (v, w),执行以下操作: i. 如果结点 w 尚未被访问,则将其 d 值设置为 e 的权重(如果没有权重,则设置为 1),并将结点 w 放入队列中。 ii. 同时,将结点 w 的前驱结点 π 值设置为结点 v。 请提供图的详细信息,以便我为您计算。

      天工:

      由于您提到的图22-3并未附在此问题中,我无法直接查看该图并为您提供具体的d值(距离值)和π值(前置节点值)。不过,我可以为您解释如何计算这些值以及广度优先搜索(BFS)算法的基本步骤。

      在广度优先搜索算法中,我们从一个源节点u开始,按照层次遍历的方式访问图中的所有节点。对于每个节点v,d[v]记录了从源节点u到v的最短路径长度(在没有权重的情况下即为边的数量),而π[v]则记录了在遍历过程中到达v的前一个节点,即v的前驱节点。

      以下是BFS算法的基本步骤:

      1. 初始化所有节点的d值为无穷大,π值为None(或未定义),并将源节点u的d值设为0。
      2. 创建一个队列,将源节点u入队。
      3. 当队列不为空时,重复以下步骤: a. 取出队列头部的节点x。 b. 遍历x的所有邻接节点y: i. 如果y尚未被访问过(即d[y]仍为无穷大),则更新其d值为d[x] + 1,设置π[y] = x,并将y入队。 ii. 如果y已被访问过,但发现通过x到达y的路径更短(即d[x] + 1 < d[y]),则更新d[y]和π[y]。

      执行完上述步骤后,所有已访问节点的d值和π值就确定了。对于未访问的节点,它们的d值仍保持为无穷大,π值为未定义。

      为了得到图22-3的具体d值和π值,您需要根据上述步骤手动或编写程序实现BFS算法,并对照图22-3进行计算。如果您能提供图22-3的具体结构或者更多关于图的信息,我可以进一步帮助您分析和计算。

      kimi:

      要回答这个问题,我需要看到图22-3的具体内容。广度优先搜索(BFS)是一种遍历或搜索树和图的算法,它从一个节点开始,逐层遍历节点。在BFS中,每个节点会被分配两个值:d值和π值。

      • d值:表示从源节点到该节点的距离,即经过的边数。
      • π值:表示从源节点到该节点的最短路径上,该节点的前一个节点。

      由于我无法看到图22-3,我无法直接给出具体的d值和π值。但是,我可以解释如何计算它们:

      1. 初始化:将源节点u的d值设置为0,并将π值设置为null(因为它是起始点)。
      2. 创建队列:将源节点u加入队列。
      3. 遍历队列:当队列非空时,执行以下步骤:
      • 从队列中移除一个节点v。
      • 对于v的每一个邻接节点w(如果w没有被访问过):
      • 将w的d值设置为v的d值加1。
      • 将w的π值设置为v。
      • 将w加入队列。
      1. 重复步骤3,直到队列为空。

      如果你能提供图22-3的具体描述或图示,我可以帮你计算具体的d值和π值。如果没有图,你可以描述图中的节点和边,我将根据你的描述来计算。

      算法导论22.2 2题

      混元:

      为了计算无向图上运行广度优先搜索(BFS)算法后的 d 值和 π 值,我们需要首先了解图的结构。由于您没有提供具体的图结构,我将以一个假设的无向图为例进行说明。假设我们有以下无向图(使用邻接表表示):

      图22-3:
      A -- B -- D
       \      /
        \    /
         C -- E

      节点顺序为:A, B, C, D, E。源节点 u 为 A。

      接下来,我们将执行广度优先搜索算法。首先,初始化一个队列 Q,将源节点 A 入队,并将所有节点的 d 值设为无穷大(∞),π 值为 None。将源节点 A 的 d 值设为 0。

      1. 访问 A,将其邻居 B 和 C 入队。更新它们的 d 值为 1,π 值为 A。当前队列:[B, C]。
      2. 访问 B,将其邻居 D 入队。更新 D 的 d 值为 2,π 值为 B。当前队列:[C, D]。
      3. 访问 C,将其邻居 E 入队。更新 E 的 d 值为 2,π 值为 C。当前队列:[D, E]。
      4. 访问 D,没有未访问过的邻居。当前队列:[E]。
      5. 访问 E,没有未访问过的邻居。队列为空。

      广度优先搜索完成后,我们得到以下 d 值和 π 值:

      节点 | d  | π
      -----|----|---
      A    | 0  | None
      B    | 1  | A
      C    | 1  | A
      D    | 2  | B
      E    | 2  | C

      请注意,这里的图结构和源节点 u 是假设的。您需要根据实际图结构来计算 d 值和 π 值。

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/11470786,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:Vue学习笔记:Vuex part01

      下一篇:Redis分区容错秘诀:解密主从模式

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-16 09:15:17

      BFS解决拓扑排序(1)_课程表

      BFS解决拓扑排序(1)_课程表

      2025-05-16 09:15:17
      lt , 课程 , 队列
      2025-05-16 09:15:17

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      Linux系统基础-多线程超详细讲解(5)_单例模式与线程池

      2025-05-16 09:15:17
      单例 , 线程 , 队列
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:07:38

      30天拿下Rust之箱、包和模块

      Rust语言使用模块系统来组织工程和代码。模块系统允许我们将相关的函数、类型、常量等组织在一起,形成一个逻辑上的单元。通过模块系统,我们可以隐藏实现细节,只暴露必要的接口,从而提高代码的可读性和可维护性。

      2025-05-14 10:07:38
      Rust , 关键字 , 文件 , 模块 , 访问
      2025-05-14 10:03:13

      AJAX-事件循环(超详细过程)

      JS有一个基于事件循环的并发模型,事件循环负责执行代码、收集和处理事件以及执行队列中的子任务。

      2025-05-14 10:03:13
      代码 , 任务 , 出栈 , 异步 , 执行 , 调用 , 队列
      2025-05-14 10:03:13

      数据结构-队列

      队列是仅限在一端进行插入,另一端进行删除的线性表。

      2025-05-14 10:03:13
      元素 , 入队 , 出队 , 链表 , 队列
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5274615

      查看更多

      最新文章

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

      2025-04-18 07:11:40

      文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

      2025-04-18 07:11:19

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      2025-04-16 09:26:39

      文心一言 VS 讯飞星火 VS chatgpt (348)-- 算法导论23.2 7题

      2025-04-16 09:26:27

      查看更多

      热门文章

      1791. 找出星型图的中心节点

      2023-02-13 07:55:59

      zookeeper 的数据模型

      2023-07-27 06:18:47

      【实时同步处理与分析设备采集信息】

      2024-04-19 07:48:08

      无限极分类查找所有子孙节点的改进算法

      2024-05-22 10:02:04

      给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置

      2024-05-13 08:44:28

      UVA12100 打印队列 Printer Queue

      2024-05-27 09:15:18

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      文心一言 VS 讯飞星火 VS chatgpt (163)-- 算法导论13.1 3题

      文心一言 VS 讯飞星火 VS chatgpt (186)-- 算法导论14.1 3题

      文心一言 VS 讯飞星火 VS chatgpt (358)-- 算法导论24.2 4题

      探索IAM的重要性及其在各行业的应用

      海量数据处理的高频面试题分析

      文心一言 VS 讯飞星火 VS chatgpt (184)-- 算法导论14.1 1题

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号