爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      2025-04-11 07:03:35 阅读次数:5

      插入,红色,红黑树,节点

      一、用go语言,在 RB-INSERT 的第 16 行,将新插人的结点 z 着为红色。注意到,如果将 z 着为黑色,则红黑树的性质4就不会被破坏。那么为什么不选择将 z 着为黑色呢?

      文心一言:

      在红黑树中,节点被着色为红色或黑色,以满足红黑树的五个性质。性质4指出,每个节点要么是红色,要么是黑色,并且红色节点不能相邻(即,一个节点和它的两个子节点不能都是红色)。

      回到你提到的RB-INSERT操作,在第16行,新插入的节点z可以被着色为红色或黑色。将z着为红色可以立即满足红黑树的性质4,因为z作为一个新插入的节点,之前并没有与其相邻的节点。

      然而,如果选择将z着为黑色,虽然不会违反红黑树的性质4,但可能会导致后续的RB-INSERT或RB-DELETE操作需要更多的颜色调整来保持红黑树的性质。这是因为,在某些情况下,将新节点着为黑色可能需要重新着色更多的节点,以保持红黑树的性质。

      所以,选择将新插入的节点z着为红色可以简化RB-INSERT操作,并且更有可能减少后续操作中的颜色调整。这是为什么在RB-INSERT的第16行选择将新插人的结点z着为红色的原因。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      讯飞星火:

      在红黑树中,节点的颜色可以是红色或黑色。将新插入的节点 z 着为红色可以确保红黑树的性质4不会被破坏。性质4表示在红黑树中,任意一个节点到其所有后代叶子节点的所有路径上包含相同数量的黑节点。

      如果将 z 着为黑色,那么在从根节点到 z 的路径上可能会有多于一半的黑节点。这违反了性质4,因为这意味着从根节点到叶子节点的路径上的黑节点数量可能不相等。因此,为了保持红黑树的性质4,我们需要将新插入的节点 z 着为红色。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      360智脑:

      在红黑树中,新插入的节点默认被着色为红色。这样做的原因是,如果新插入的节点被着色为黑色,那么红黑树的性质4(关于黑色节点的性质)就不会被破坏。但是,为了保持红黑树的平衡性,我们需要进行一些旋转和颜色翻转操作,以确保树的平衡性。而将新插入的节点着色为红色,可以简化这些操作。

      当新插入的节点为红色时,如果它的父节点也为红色,那么我们就需要进行旋转和颜色翻转操作。但是,这种情况相对较少,因为红黑树中黑色节点的数量总是比红色节点的数量多。因此,将新插入的节点着色为红色,可以在大多数情况下避免进行复杂的旋转和颜色翻转操作,从而提高红黑树的插入效率。

      总之,将新插入的节点着色为红色,是为了在保持红黑树性质的同时,简化插入操作的过程。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      智谱清言:

      在红黑树中,节点要么是红色的,要么是黑色的。红黑树是一种自平衡的二叉搜索树,其中任何从根到叶子的最长的可能路径不会超过最短的可能路径的两倍长。这个性质是通过在树中插入节点时遵循特定的旋转和重新着色规则来保证的。

      红黑树具有以下性质:

      1.每个节点非红即黑。

      2.根节点是黑色的。

      3.每个叶子节点(NIL或空节点)是黑色的。

      4.每个红色节点的两个子节点都是黑色的(从每个叶子到根的所有路径上不能有两个连续的红色节点)。

      5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

      在执行RB-INSERT操作时,插入一个新节点z并不会直接违反上述性质,但是插入后可能会破坏红黑树的平衡,需要通过一系列的旋转和重新着色来修复这种平衡。具体来说,当插入新节点时,可能会违反性质4,即一个红色节点的两个子节点都是黑色的。

      如果在插入节点时将z着为红色,那么可能会违反性质4,因为z的父节点可能是红色的,这样就会有两个连续的红色节点。因此,我们需要根据插入节点后的具体情况来调整z的颜色,以保持红黑树的性质。

      通常,插入节点z后,我们会执行一系列的旋转和重新着色,以确保红黑树的性质得到维护。在这个过程中,z的颜色可能会被改变。具体来说,我们可能会执行以下步骤:

      1.将z着为红色。

      2.执行旋转操作,以解决潜在的平衡问题。

      3.根据旋转后的树的结构,重新着色节点,包括z,以维护红黑树的性质。

      如果在执行这些步骤后,将z着为黑色能够维护红黑树的性质,那么我们可以将z着为黑色。但是,这并不是一个固定的规则,而是需要根据具体情况来判断。总之,我们不能一开始就将z着为黑色,因为这可能会违反红黑树的性质,需要根据插入操作后的具体情况来调整z的颜色。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      通义千问:

      在红黑树(Red-Black Tree)中,新插入的节点 z 通常被初始化为红色是有原因的:

      1. 红黑树的性质:
      • 性质1:每个节点或是红色,或是黑色。
      • 性质2:根节点是黑色。
      • 性质3:每个叶子节点(NIL或空节点)是黑色的。
      • 性质4:如果一个节点是红色,则它的两个子节点必须都是黑色。
      • 性质5:对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。

      假设我们在插入新节点时直接将其设为黑色,虽然不会立即违反性质4,但它可能会破坏性质5,即黑高平衡。因为插入黑色节点不会改变任何现有节点的颜色(以保持黑色节点数量不变),所以从新的黑色节点到某些叶子节点的路径将会有额外的黑色节点,这就可能造成路径上的黑色节点数量不一致。

      为了维护红黑树的平衡,通过将新节点着色为红色,并随后调用调整函数(如RB_INSERT_FIXUP),可以确保经过一系列旋转和重新着色操作后,红黑树的所有性质都能得到恢复。这个调整过程可能涉及变色、左旋、右旋等操作,目的是在插入后依然保证树的近似平衡,使得查找、插入和删除等操作的时间复杂度维持在O(log n)。

      因此,选择将新插入的节点 z 初始设为红色是红黑树插入算法设计的关键步骤之一,它简化了后续调整逻辑并确保了最终树结构仍满足红黑树的所有性质。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      天工:

      将新插入的节点 z 着为黑色确实可以满足红黑树的性质4,但是这样会破坏性质2,即根节点是黑色的性质。如果将新插入的节点 z 着为黑色,那么根节点就会是红色的,这与性质2矛盾。因此,为了保持红黑树的性质,需要将新插入的节点 z 着为红色。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      灵小智:

      在红黑树的插入算法中,将新插入的节点 z 着为红色有两个主要原因。

      首先,这样做不会破坏红黑树的性质4,即确保红节点的子节点都是黑节点。如果将 z 节点着为黑色,那么它的颜色和其父节点的颜色将一致,可能导致性质4被破坏。

      其次,将新插入的节点 z 着为红色有助于保持红黑树的平衡性。通过将新节点设置为红色,可以避免在插入后引入过多的黑节点路径。红黑树的平衡是通过调整节点的颜色和旋转操作来实现的,将新节点着为红色可以减少必要的旋转次数,从而提高插入操作的效率。

      总之,将新插入的节点 z 着为红色是为了保持红黑树的性质并维持树的平衡性。这是根据红黑树的性质和算法设计来确定的最佳选择。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      chatgpt:

      在红黑树中,将新插入的节点着为红色是为了更好地满足红黑树的性质和平衡。红黑树的性质之一是:从根节点到叶子节点的每条路径上,黑色节点的数量要相等。

      如果我们将新插入的节点z着为黑色而不是红色,那么插入操作可能会破坏性质4。因为新插入一个黑色节点会导致这条路径上比其他路径多一个黑色节点,进而破坏了性质4。

      通过将新插入的节点着为红色,可以保持原有路径上黑色节点数量相等,并且需要进行调整以保持其他性质(如性质5)。在后续步骤中,我们可以通过旋转和重新着色来恢复平衡并确保所有性质得到满足。

      所以,在RB-INSERT算法中选择将新插入的结点z着为红色,是为了保证在插入过程中尽量减少对平衡性质的破坏,并能够通过后续调整来恢复树的平衡状态。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      kimi:

      在红黑树(Red-Black Tree)中,节点的颜色是用来维护树的平衡和搜索效率的一种机制。红黑树有五个性质,其中性质 4 指出:如果一个节点是红色的,则它的两个子节点都是黑色的。这个性质确保了红黑树的高度不会超过 O(log n),从而保证了搜索、插入和删除操作的高效性。

      在 RB-INSERT 操作中,新插入的节点 z 被着为红色,这是因为如果 z 被着为黑色,那么红黑树的性质 4 就不会被破坏。然而,将 z 着为红色有以下好处:

      1. 保持性质 4:如果 z 的父节点是黑色,那么性质 4 仍然成立,因为 z 是唯一的红色节点,它的两个子节点(在插入时默认为黑色)也是黑色。
      2. 允许后续调整:将 z 着为红色允许我们在后续的旋转和颜色调整操作中有更多的灵活性。在插入操作后,如果 z 的父节点是红色,我们需要进行一系列的旋转和颜色调整来恢复红黑树的性质。如果 z 是黑色,那么这些调整将变得复杂,因为我们需要处理更多的黑色节点。
      3. 保持树的平衡:将 z 着为红色有助于在后续的旋转和颜色调整中保持树的平衡。通过旋转和颜色调整,我们可以确保树的高度保持在 O(log n) 的范围内,从而保持搜索、插入和删除操作的高效性。

      在 Go 语言中,RB-INSERT 操作的代码可能如下所示:

      func RBInsert(T *RBTree, z *Node) *Node {
          // ...(省略前面的插入代码)
      
          // 新插入的节点 z 着为红色
          z.color = 1 // 1 表示红色
      
          // ...(省略后续的旋转和颜色调整代码)
      }

      在这个代码中,我们通过设置 z 的颜色为 1(红色)来保持红黑树的性质。这样做是为了在后续的调整过程中保持树的平衡和高效性。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      混元:

      在 RB-INSERT 的第 16 行,将新插入的结点 z 着为红色,是为了保证红黑树的性质 4:从每个叶子到根的所有路径上,红色结点的数量相同。

      如果将 z 着为黑色,那么在插入 z 之后,红黑树的性质 4 可能会被破坏。这是因为在插入 z 之前,红黑树的所有路径上的红色结点数量相同,但在插入 z 之后,z 被着为黑色,可能会导致某些路径上的红色结点数量增加,从而破坏了红黑树的性质 4。

      为了保证红黑树的性质 4,我们需要在插入 z 之后,通过一系列的旋转和重新着色操作,将 z 着为红色,并确保红黑树的所有路径上的红色结点数量仍然相同。这样,我们就可以保证红黑树的性质 4 不会被破坏。

      文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/9111034,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (177)-- 算法导论13.3 6题

      下一篇:文心一言 VS 讯飞星火 VS chatgpt (159)-- 算法导论12.3 6题

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      2025-05-13 09:51:17

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      2025-05-13 09:51:17
      dg , rac , 日志 , 节点
      2025-05-13 09:51:17

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      2025-05-13 09:51:17
      ORA , rac , 节点
      2025-05-13 09:50:28

      翻转二叉树,​​101. 对称二叉树​

      翻转二叉树给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

      2025-05-13 09:50:28
      Node , root , val , 二叉树 , 翻转 , 节点
      2025-05-13 09:50:28

      翻转二叉树-对称二叉树

      给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

      2025-05-13 09:50:28
      right , 二叉树 , 左子 , 节点 , 遍历
      2025-05-13 09:50:28

      将有序数组转换为二叉搜索树,98. 验证二叉搜索树

      将有序数组转换为二叉搜索树给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。 

      2025-05-13 09:50:28
      nums , 二叉 , 右子 , 左子 , 搜索 , 节点
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5243809

      查看更多

      最新文章

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

      2025-04-18 07:11:40

      文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

      2025-04-18 07:11:19

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      Hive-DML详解(超详细)

      2025-04-18 07:10:53

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      2025-04-16 09:26:39

      查看更多

      热门文章

      zookeeper 的数据模型

      2023-07-27 06:18:47

      hive——通过外部向表中插入数据问题

      2023-04-13 09:51:35

      无限极分类查找所有子孙节点的改进算法

      2024-05-22 10:02:04

      给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置

      2024-05-13 08:44:28

      数据节点操作

      2024-06-04 08:37:51

      弗洛伊德(Floyd's)算法—解决最短路径经典算法

      2024-11-13 09:08:40

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      【Trino权威指南(第二版)】Trino的架构、trino架构组件、 trino连接器架构的细节、trino的查询执行模型

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      文心一言 VS 讯飞星火 VS chatgpt (182)-- 算法导论13.4 6题

      图与树的基本概念

      文心一言 VS 讯飞星火 VS chatgpt (258)-- 算法导论19.3 1题

      算法面试题——删除链表后第N个节点

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号