爆款云主机2核4G限时秒杀,88元/年起!
查看详情

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
热门活动
  • 618智算钜惠季 爆款云主机2核4G限时秒杀,88元/年起!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 首保服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
      • 文档
      • 控制中心
      • 备案
      • 管理中心

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      首页 知识中心 大数据 文章详情页

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      2025-04-11 07:01:58 阅读次数:4

      左子,深度,结点,节点

      三、用go语言,设在图 13-2 左边一棵树中,a、b和c 分别为子树a、β和γ中的任意结点。当结点 x 左旋之后,a、b和c 的深度会如何变化?

      文心一言:

      在二叉树中,左旋操作是改变节点的子节点顺序。原本的子节点β变为新的左子节点,原本的左子节点γ变为新的右子节点。

      对于给定的节点a、b和c,我们首先需要明确它们在原始树中的位置关系。由于题目中没有给出具体的树结构,我假设a是b的左子节点,b是c的左子节点。

      当节点x进行左旋操作后,节点的子节点关系变为:

      a成为新的右子节点 b成为新的左子节点 c可能成为新的父节点(如果x原本没有父节点),或者成为b的新右子节点(如果x原本有父节点) 对于深度变化,我们可以这样考虑:

      如果b原本的深度小于或等于c,那么b的深度增加1,c的深度不变。 如果b原本的深度大于c,那么b和c的深度都增加1。 请注意,上述解释基于一个假设:在原始树中,a是b的左子节点,b是c的左子节点。如果实际的关系不同,深度变化也会有所不同。因此在实际操作中,我们应当明确知道各个节点的位置关系。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      讯飞星火:

      当结点 x 左旋之后,a、b 和 c 的深度会发生变化。具体来说,如果 a 是 x 的父节点,那么在左旋后,a 的深度不变,而 b 和 c 的深度分别减 1。这是因为左旋操作会使 x 成为其右子树的根节点,而原来的右子树变为了 x 的左子树。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      360智脑:

      在图13-2左边的树中,假设a、b和c是子树a、β和γ中的任意结点。当结点x进行左旋操作后,a、b和c的深度可能会发生变化。

      在左旋操作中,x的左子节点会成为新的根节点,而x会成为其右子节点。这意味着在左旋之后,a、b和c的深度可能会增加1。具体来说:

      1. 如果a、b和c在左旋之前是x的左子树中的结点,那么它们的深度在左旋之后会增加1。
      2. 如果a、b和c在左旋之前是x的右子树中的结点,那么它们的深度在左旋之后不会发生变化。

      需要注意的是,这里给出的答案是基于旋转操作在平衡树(如AVL树、红黑树等)中的常见应用。在其他类型的树结构中,旋转操作可能会有不同的实现和效果。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      智谱清言:

      在Go语言中实现树的旋转操作,尤其是左旋,需要理解旋转的原理以及如何通过编程语言来具体实现。左旋是一种针对二叉树节点的操作,其目的是为了维持树的平衡,这是在AVL树和红黑树等自平衡二叉树中常见的操作。

      左旋操作的基本步骤如下:

      1.找到需要左旋的节点:这个节点通常是某个节点的右子节点,并且这个右子节点的左子节点高度较大,导致树失去平衡。

      2.旋转操作:将这个需要左旋的节点(设为x)的右子节点(设为y)变为x的左子节点,同时将y的左子节点(设为z)变为x的右子节点。如果z不为空,需要将z的父节点指针指向x。

      3.更新父指针:将x的父节点(设为p)的左子节点指针指向y,使y成为p的新左子节点。

      在这个问题中,我们关注的是左旋操作后,节点a、b和c的深度如何变化。根据左旋操作的步骤,我们可以得出以下结论:

      • 节点a:如果a是x的左子节点,那么在左旋后,a的深度不会改变,因为它仍然是x的左子节点。如果a是y的左子节点,那么在左旋后,a的深度会增加1,因为a现在成为了x的右子节点。
      •  
      • 节点b:b的深度不会改变,因为b是y的左子节点,而在左旋操作中,y变为x的左子节点,b的位置没有变化。
      •  
      • 节点c:c的深度会增加1,因为在左旋操作中,c成为了y的右子节点,而y变为x的左子节点,c的位置相对于x提高了1层。
      •  

      通过Go语言实现这一过程,我们需要定义树的节点结构,并实现左旋操作的相关方法。这里是一个简化的Go语言实现示例:

      type TreeNode struct {
          Val   int
          Left  *TreeNode
          Right *TreeNode
          Parent *TreeNode // 父节点指针
      }
      // 左旋操作
      func (n *TreeNode) leftRotate() {
          // 基本左旋操作
          // ...
          // 更新父指针
          // ...
      }
      // 其他相关方法
      // ...

      在这个示例中,我们没有提供具体的旋转逻辑,因为这取决于树节点的具体定义和旋转操作的具体实现。实际的旋转操作需要维护正确的父子关系,并更新相关的指针,以确保树结构的正确性。在实际应用中,旋转操作通常伴随着额外的检查和调整,以确保旋转后树仍然保持平衡。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      通义千问:

      在图 13-2 中,如果结点 x 进行左旋操作( AVL树或红黑树等自平衡二叉搜索树中常见的调整操作),我们通常假设x是其父节点的右子节点,并且x有一个非空的左子节点y。

      在这个旋转过程中:

      1. 结点 x 将成为原父节点的位置。
      2. 原 x 的左子节点 y 将成为新的 x 的右子节点。
      3. 原 x 的父节点将变成新 y 的左子节点。

      对于 a、b 和 c 的深度变化:

      • 如果 a 是 y 的左子树中的节点,则 a 的深度不会改变,因为它仍然是原来的 x(现为根)的左后代。
      • 如果 b 是原来 x 的右子树中的节点,在左旋后,b 将变为 y 的右子树中的节点,因此它的深度增加 1。
      • 如果 c 是原父节点的其他子树中的节点,在左旋后,c 变为新 x(原 y)的左子树下的节点,因此其深度不变。

      总结来说:

      • a 的深度:不变
      • b 的深度:增加 1
      • c 的深度:不变

      请注意,以上描述基于标准的单次左旋操作以及 a、b、c 在旋转前后的相对位置关系。实际情况下需要具体分析树的具体结构和旋转细节。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      天工:

      在图13-2中,如果结点x进行左旋操作,那么a、b和c的深度会如何变化取决于它们在树x中的位置。

      假设a、b和c在树x中的位置如下:

      • 结点a在x的左侧
      • 结点b在x的右侧且在a的左侧
      • 结点c在x的右侧且在b的左侧

      那么,进行左旋操作后,a、b和c的深度会发生以下变化:

      1. 结点a的深度不变。因为左旋操作相当于把x移动到a的位置,所以a的深度仍然是它原本的深度。
      2. 结点b的深度变大了。在进行左旋操作后,b原来的右侧父节点现在变成了b的左侧子节点,所以b的深度变大了。
      3. 结点c的深度也变大了。同样的,c原来的右侧父节点现在变成了c的左侧子节点,所以c的深度也变大了。

      总结一下,进行左旋操作后,a、b和c的深度都变大了。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      灵小智:

      在进行左旋操作后,节点x的左子节点b会取代节点x的位置,而节点x则成为节点b的右子节点。节点a和节点c的位置不变。因此,深度的变化如下:
      1. 节点a的深度不变。
      2. 节点b的深度会增加1,因为它成为了新的子树的根节点。
      3. 节点c的深度不变。

      总结起来,左旋操作会导致子树a的深度不变,子树b的深度增加1,而子树c的深度保持不变。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      chatgpt:

      在进行左旋操作后,子树a将成为x的父节点,而子树β将成为子树a的右子树。同时,子树γ保持不变。

      具体来说,结点x左旋后,a、b和c的深度会有如下变化:

      1. 结点x原来作为父节点的深度减少了一层;
      2. 子树a的深度增加了一层;
      3. 子树β的深度保持不变;
      4. 子树γ的深度保持不变。

      总体上看,左旋操作会导致结点x向左移动并提升到更高的位置,同时影响了与之相关联的三个子树的深度。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      kimi:

      在图 13-2左边的树中,如果节点 x 执行左旋操作,那么子树 β 将提升为 x 的父节点的位置,而 x 将成为 β 的左子节点。这个操作会改变树的结构,但不会改变节点的深度。在二叉搜索树中,节点的深度是从根节点到该节点的路径上的边数。

      在左旋操作中,节点 a、b 和 c 的深度不会发生变化。这是因为左旋操作仅涉及节点 x 和其父节点,以及它们的子节点。左旋操作不会改变其他节点的父节点,也不会改变树的高度或节点的相对位置。

      以下是 Go 语言中左旋操作的伪代码,它展示了节点的深度不会发生变化:

      // 假设我们有一个红黑树节点结构体 Node
      type Node struct {
          key   int
          color int // 0: black, 1: red
          left  *Node
          right *Node
          parent *Node // 用于旋转操作的额外指针
      }
      
      // LEFT-ROTATE 函数
      func leftRotate(x *Node) *Node {
          // 保存 x 的右子节点
          y := x.right
      
          // 将 y 的左子节点设置为 x 的右子节点
          x.right = y.left
      
          // 如果 y 的左子节点不为空,更新其父指针
          if y.left != nil {
              y.left.parent = x
          }
      
          // 更新 y 的父指针
          y.parent = x.parent
      
          // 如果 x 是根节点,更新根节点
          if x.parent == nil {
              root = y
          } else {
              // 如果 x 是其父节点的左子节点
              if x.parent.left == x {
                  x.parent.left = y
              } else {
                  // 如果 x 是其父节点的右子节点
                  x.parent.right = y
              }
          }
      
          // 将 y 的左子节点设置为 x
          y.left = x
      
          // 更新 x 的父指针
          x.parent = y
      
          // 返回新的根节点
          return y
      }

      在这个伪代码中,我们可以看到左旋操作仅涉及节点 x 和其右子节点 y,以及它们的子节点。节点 a、b 和 c 的深度不会受到影响。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      混元:

      在图13-2中,我们有一棵二叉搜索树,其中a、b和c分别为子树a、β和γ中的任意结点。当结点x左旋之后,a、b和c的深度会发生以下变化:

      1. 结点a的深度不变。因为结点a是子树a的根节点,左旋操作只会影响到结点x及其子树,而不会影响到子树a。
      2. 结点b的深度会增加1。因为结点x的左子节点是结点b,左旋操作会将结点x的右子节点变为结点b的左子节点,而结点b本身变为结点x的左子节点。这样,结点b的深度就会增加1。
      3. 结点c的深度会减少1。因为结点x的右子节点是结点c,左旋操作会将结点x的右子节点变为结点b的左子节点,而结点c本身变为结点b的右子节点。这样,结点c的深度就会减少1。

      因此,在图13-2中,当结点x左旋之后,结点a的深度不变,结点b的深度增加1,结点c的深度减少1。

      文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题

      版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/9063548,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

      上一篇:文心一言 VS 讯飞星火 VS chatgpt (181)-- 算法导论13.4 4题

      下一篇:文心一言 VS 讯飞星火 VS chatgpt (172)-- 算法导论13.3 1题

      相关文章

      2025-05-19 09:04:44

      spark控制台没显示其他机器

      spark控制台没显示其他机器

      2025-05-19 09:04:44
      Spark , 节点 , 集群
      2025-05-19 09:04:14

      二叉树经典OJ练习

      二叉树经典OJ练习

      2025-05-19 09:04:14
      root , 二叉树 , 子树 , 节点 , 遍历
      2025-05-16 09:15:10

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)

      2025-05-16 09:15:10
      结点 , 递归 , 遍历 , 链表 , 题目
      2025-05-14 10:03:13

      【MySQL】-数据库优化(索引)

      索引(index)是帮助数据库高效获取数据的数据结构

      2025-05-14 10:03:13
      index , Tree , 二叉 , 搜索 , 数据 , 索引 , 节点
      2025-05-14 10:02:48

      MongoDB常用管理命令(1)

      MongoDB常用管理命令(1)

      2025-05-14 10:02:48
      会话 , 命令 , 操作 , 节点
      2025-05-14 09:51:15

      java实现管线拓扑关系连通性分析

      管线拓扑关系的连通性分析通常涉及图论(Graph Theory)中的概念,特别是无向图(Undirected Graph)的遍历算法,如深度优先搜索(DFS, Depth-First Search)或广度优先搜索(BFS, Breadth-First Search)。

      2025-05-14 09:51:15
      BFS , DFS , 复杂度 , 搜索 , 节点 , 访问 , 遍历
      2025-05-13 09:51:17

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      rac dg节点2在修改完alert_oracle_sid.log文件名,主库切换日志后备库节点2不产生新的日志文件

      2025-05-13 09:51:17
      dg , rac , 日志 , 节点
      2025-05-13 09:51:17

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      rac环境节点1修改参数后,节点2启动出现ORA-01105、ORA-01677告警

      2025-05-13 09:51:17
      ORA , rac , 节点
      2025-05-13 09:50:28

      翻转二叉树,​​101. 对称二叉树​

      翻转二叉树给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

      2025-05-13 09:50:28
      Node , root , val , 二叉树 , 翻转 , 节点
      2025-05-13 09:50:28

      翻转二叉树-对称二叉树

      给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

      2025-05-13 09:50:28
      right , 二叉树 , 左子 , 节点 , 遍历
      查看更多
      推荐标签

      作者介绍

      天翼云小翼
      天翼云用户

      文章

      33561

      阅读量

      5226778

      查看更多

      最新文章

      DS初阶:二叉树的顺序结构及堆的实现

      2025-05-08 09:04:49

      文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

      2025-04-18 07:11:40

      文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

      2025-04-18 07:11:19

      文心一言 VS 讯飞星火 VS chatgpt (357)-- 算法导论24.2 3题

      2025-04-18 07:11:02

      文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

      2025-04-16 09:26:39

      文心一言 VS 讯飞星火 VS chatgpt (348)-- 算法导论23.2 7题

      2025-04-16 09:26:27

      查看更多

      热门文章

      1791. 找出星型图的中心节点

      2023-02-13 07:55:59

      zookeeper 的数据模型

      2023-07-27 06:18:47

      无限极分类查找所有子孙节点的改进算法

      2024-05-22 10:02:04

      给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置

      2024-05-13 08:44:28

      数据节点操作

      2024-06-04 08:37:51

      弗洛伊德(Floyd's)算法—解决最短路径经典算法

      2024-11-13 09:08:40

      查看更多

      热门标签

      算法 leetcode python 数据 java 数组 节点 大数据 i++ 链表 golang c++ 排序 django 数据类型
      查看更多

      相关产品

      弹性云主机

      随时自助获取、弹性伸缩的云服务器资源

      天翼云电脑(公众版)

      便捷、安全、高效的云电脑服务

      对象存储

      高品质、低成本的云上存储服务

      云硬盘

      为云上计算资源提供持久性块存储

      查看更多

      随机文章

      文心一言 VS 讯飞星火 VS chatgpt (151)-- 算法导论12.2 7题

      文心一言 VS 讯飞星火 VS chatgpt (245)-- 算法导论18.1 3题

      文心一言 VS 讯飞星火 VS chatgpt (182)-- 算法导论13.4 6题

      文心一言 VS 讯飞星火 VS chatgpt (264)-- 算法导论20.1 3题

      数据节点操作

      文心一言 VS 讯飞星火 VS chatgpt (243)-- 算法导论18.1 1题

      • 7*24小时售后
      • 无忧退款
      • 免费备案
      • 专家服务
      售前咨询热线
      400-810-9889转1
      关注天翼云
      • 旗舰店
      • 天翼云APP
      • 天翼云微信公众号
      服务与支持
      • 备案中心
      • 售前咨询
      • 智能客服
      • 自助服务
      • 工单管理
      • 客户公告
      • 涉诈举报
      账户管理
      • 管理中心
      • 订单管理
      • 余额管理
      • 发票管理
      • 充值汇款
      • 续费管理
      快速入口
      • 天翼云旗舰店
      • 文档中心
      • 最新活动
      • 免费试用
      • 信任中心
      • 天翼云学堂
      云网生态
      • 甄选商城
      • 渠道合作
      • 云市场合作
      了解天翼云
      • 关于天翼云
      • 天翼云APP
      • 服务案例
      • 新闻资讯
      • 联系我们
      热门产品
      • 云电脑
      • 弹性云主机
      • 云电脑政企版
      • 天翼云手机
      • 云数据库
      • 对象存储
      • 云硬盘
      • Web应用防火墙
      • 服务器安全卫士
      • CDN加速
      热门推荐
      • 云服务备份
      • 边缘安全加速平台
      • 全站加速
      • 安全加速
      • 云服务器
      • 云主机
      • 智能边缘云
      • 应用编排服务
      • 微服务引擎
      • 共享流量包
      更多推荐
      • web应用防火墙
      • 密钥管理
      • 等保咨询
      • 安全专区
      • 应用运维管理
      • 云日志服务
      • 文档数据库服务
      • 云搜索服务
      • 数据湖探索
      • 数据仓库服务
      友情链接
      • 中国电信集团
      • 189邮箱
      • 天翼企业云盘
      • 天翼云盘
      ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
      公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
      • 用户协议
      • 隐私政策
      • 个人信息保护
      • 法律声明
      备案 京公网安备11010802043424号 京ICP备 2021034386号